Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup

Searching for ultra- and hyper- luminous X-ray sources in the *Swift*-XRT catalog

Supervisor: Dr. Olivier GODET April-September 2020

Clément Pellouin

M2 Internship Presentation IRAP

September 30th, 2020

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup

Contents

1 Introduction

- Formation paths of Supermassive Black Holes (SMBHs)
- ULXs & HLXs
- Data mining in multi-wavelength catalogs

2 ULX/HLX candidates selection

- The ULX/HLX sample
- ULX/HLX sample cleaning
- 3 HLX candidate in NGC 5917
 - X-ray data analysis
 - MUSE data analysis

4 Conclusion

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
000000000				

Introduction

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup							
000000000000000000000000000000000000000											
Formation paths of Supermassive Black Holes (SMBHs)											
SMBHs											

Characteristics

- \blacksquare 10⁶ $M_{\odot} \lesssim M_{SMBH} \lesssim 10^{10} M_{\odot}$ Kormendy et al. 1995
- At the center of most galaxies with $M_{aal} \gtrsim 10^9 \ M_{\odot}$ Kormendy & Ho 2013
- Can have phases of enhanced activity (10⁷ 10⁸ years): Active Galactic Nuclei (AGNs) Hong et al. 2015
- During AGN phase, huge release of energy through radiation $(L_X \sim 10^{38} - 10^{48} \text{ erg} \cdot \text{s}^{-1})$ and kinetic energy (outflows: jets & winds)

Introduction

ULX/HLX candidates selection

HLX candidate in NGC 5917

Conclusion

Formation paths of Supermassive Black Holes (SMBHs)

SMBH and galaxy joint growth

Feedback processes

- Enhanced/Quenched star formation
 - Higher gas density
 - Higher velocity dispersion
 - Winds and outflows
- Auto-regulation of accretion rates
- Baryons reprocessing

SMBH, host galaxy growth and galaxy dynamics in a cluster are entangled

OSEP

Introduction

ULX/HLX candidates selection

HLX candidate in NGC 5917

Conclusion

Formation paths of Supermassive Black Holes (SMBHs)

How to grow an SMBH?

Observations

- **8** \times 10⁸ M_{\odot} SMBH at z = 7.5 Banados et al. 2018
- $2 \times 10^9 M_{\odot}$ SMBH in a quasar at z = 7.1 Mortlock et al. 2011
- Masses up to $6.6 \times 10^{10} M_{\odot}$ shemmer et al. 2004

SMBH growth scenarios

Hierarchical growth by successive intermediate-mass BH mergers Farouki et al 1983 $100 \ M_{\odot} \lesssim M_{IMBH} \lesssim 10^5 \ M_{\odot}$ Miller &

 $100 M_{\odot} \gtrsim M_{IMBH} \gtrsim 10^{\circ} M_{\odot}$ Miller & Colbert 2004

 Sustained accretion episodes at high accretion rates

Greene 2012

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
0000000000				
ULXs & HLXs				
E della state	Pres St.			

Eddington limit

- Gravitational attraction on protons: $F_{grav} = \frac{m_p GM}{r^2}$
- Radiation pressure on the electrons (Thomson scattering): $F_{rad} = \frac{\sigma_T}{c} \frac{L}{4\pi r^2}$
- $\begin{array}{l} \hline \quad \mbox{Eddington luminosity Eddington 1921:}\\ L_{Edd} = \frac{4\pi\ c\ G\ M\ m_p}{\sigma_T} \simeq \\ 1.3 \times 10^{38} \left(\frac{M}{M_\odot}\right) \mbox{erg}\cdot\mbox{s}^{-1} \end{array}$
- Corresponding to an accretion rate limit: $\dot{m}_{Edd} = \frac{4\pi GMm_p}{\eta c\sigma_T} \propto M$

Gravitational attraction on the protons balances outbound pressure on the electrons

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
0000000000				
ULXs & HLXs				
Eddinaton	limit			

Gravitational attraction on protons:

$$F_{grav} = \frac{m_p GM}{r^2}$$

- Radiation pressure on the electrons (Thomson scattering): $F_{rad} = \frac{\sigma_T}{c} \frac{L}{4\pi r^2}$
- Corresponding to an accretion rate limit: $\dot{m}_{Edd} = \frac{4\pi G M m_p}{\eta c \sigma_T} \propto M$

Consequences

- Eddington limit directly proportional to the accretor mass
- If $L \ge L_{Edd}$, accretion may stop
- Impossible to grow a SMBH at sub-Eddington rates at high redshifts

Introduction ULX/HLX candidates selection		HLX candidate in NGC 5917	Conclusion	Backup	
000000000 00000000000000000000000000000					
ULXs & HLXs					

Looking for super-Eddington accretion and IMBHs

Two directions of research

- Potential episodes of super-Eddington accretion
- SMBH growth by IMBH mergers

Open questions

- Is super-Eddington accretion possible?
- Are Eddington rates sufficient to grow a SMBH given the outflows?
- How long can accretion last?
- What are the feedback mechanisms?
- What impacts does this feedback induce on the BH environment at different spatial scales?
- How do IMBHs form? How do they grow?
- What are the hosts of IMBHs?

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
00000000000				
ULXs & HLXs				

ULXs & HLXs

Definition Feng et al 2011

- Extragalactic off-nuclear X-ray source powered by accretion of matter
- ULX: Isotropic equivalent $L_X \ge 10^{39} \text{ erg} \cdot \text{s}^{-1} (0.3 10 \text{ keV})$
- HLX: Isotropic equivalent $L_X \ge 10^{41} \text{ erg} \cdot \text{s}^{-1} (0.3 10 \text{ keV})$

ULXs: super-Eddington accretion?

- bubbles observed around some ULXs (winds/radiation) Pakull & Mirioni 2002
- 6 persisting pulsating ULXs discovered with period spin-up Bachetti et al 2014: NS progenitors (~ 1.4 1.5 M_{\odot}) with strongly super-Eddington accretion ($L_X \gg 10^{38} \text{ erg} \cdot \text{s}^{-1}$)

HLXs: accreting IMBHs?

- Very few candidates:
- HLX-1 Farrell et al 2009 has multi-wavelength properties similar to an X-ray binary (XRB), but 1000 times more luminous
- Tidal Disruption Event (TDE) Lin et al 2018

Introduction

ULX/HLX candidates selection

HLX candidate in NGC 5917

Conclusion

Data mining in multi-wavelength catalogs

The Neil Gehrels Swift observatory

Characteristics Gehrels et al. 2004

- Multi-wavelength gamma-ray burst (GRB) observatory
- Carries 3 instruments:
 - BAT (Burst Alert Telescope, Barthelmy et al. 2005): GRB prompt emission detection at 15 - 150 keV
 - XRT (X-ray Telescope, Burrows et al. 2005): sky observation at 0.3 - 10 keV (GRB afterglows, X-ray source monitoring)
 - UVOT (Ultraviolet/Optical Telescope, Roming et al. 2005): 6 filters for a sensitivity at 160 - 600 nm
- Automatic sky localization and repositioning after a GRB detection

The Swift spacecraft model Credit: NASA E/PO

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup	
000000000 00000000000000000000000000000					
Data mining in multi-wav	elength catalogs				

The 2SXPS catalog Evans et al 2020

Characteristics

- Swift-XRT observations between 2005-01-01 and 2018-08-31
- 206335 X-ray sources
- Sky coverage: 3790 deg²
- Up to 230 data columns per source (Position, Exposure, Flags, Count rates, Spectral/Flux information, Cross-correlations)

Assets

- High number of unknown sources (~ 90 % not observed by XMM-Newton)
- Large sky coverage
- Simultaneous UVOT observations
- Short- and long-term monitoring of sources (from ~ 1 s to ~ 10 years)
- Online tools available

OSep

Positions of the sources of 2SXPS in the Galactic coordinates

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
	0000000000			

ULX/HLX candidates selection

Introduction

ULX/HLX candidates selection

HLX candidate in NGC 5917

Conclusion

The ULX/HLX sample

Producing a ULX/HLX sample

A5.74			040	8190	RA/2203	18,19708	8.47	88100	100,000	1000 W			P50, Mp	
							435,595				84.	THUCK.		
		184,1976	[7,5546]		100, 21110.	27,56487	201.012	15.74	14,27715	(5,8131)	65,7	144	84424	
15075-7241417-820410		550,15455			139, 2254		245,576	15,045	45,50306	10,9952	54.	PECHIC	41476	
15075-1241055-270525		181,26805	17,08847		139,225		101,181	18,55	11,00000	9, 101417	121,2	244		
10070-10241084-041022		(#1,)993			188,20848		667,552	17,96				244		
10093-204110-4+50404	- 6	141,26505			188,38335	43,79883	w41,05h	17,79	24,81425	14, 80517	634.2	144	2443626	
154PA PAINA RMARK		LHL.10225			139.21718		81,128	14.20	21.71	11. H	131.5	1000		
station in her blats building		144.32200		1.4	188.33648	24,08841	71.100		36.3	10.HI	4.	1000		
150PS / NOTIFIED STORA		181.17227	17, 19104	4.7	139.1728	17.10721	201,118	18.52	14.12087	15.12871	41.2	104	2614177	
154P5 (2411) 4726010	- 4	184.18185		2.4	1398, 334618		44,483	16.12	48.3	18.88	181.1	1000	42872	
LINES, CONTRACTORS,		101.0003		8.7	198.397	10.4400	189.7	25.00	5,7200	1.47287	- C.	175.0		
100PE / 24/344-200218	- 4	191.79227		5.2	129, 2019		91,152		18.3	18.98	251.7	2002	42917	
100%./24/341+842634		184,9902	11,01348		139, 315		181,922	16,73	[4, 4479]	17.83334	4.	114		
15075 2241511+16408		151.43291	18,77745	18.	139.40991			15.274		2.124	-91.	TANKS		
10070-2241024-160028					198, 40844		1184,95				81,	2MAR		
10093-024308-0-011027		151,50524	10, 20041	4.5	130.51405	\$5,0000A	741,945	17,182		2,8	51.	INPUTX		
15075-7243417-250735		181,47384		C.I.	130, 65682		531,617	18,31	16, 57433			114		
TIPPE PARKET ABARA		181.188.14	18.74444	2.4	ING TREES		661.18)	14.08	16.12975		64.2	1.1.4		
TREES INVESTIGATION	- 4	144.0104	-b.25417	6.7	139.641	-1.75313	001.105	15.04	14.73825		64.5	(MAR)		
TREES POSTIFIATORES		184.82127		1.1	139.82644		391,481			1.64	121.	255/21		
states, enabled to think a	- 6	181.88424			188.821				105.41963		141.6	Date:		
TREPS / DATE: STORE		LHL REAT	11.0079	4.4	139.021	11.00203	27,7921	6.7	105, 11102	TIL DIGILI	241.6	104	(2011)	
10495 3 24147 4 262 144		181.14793			LPR. STITL	-1.16241		18,49	39.44343	19.33942	149.8	114		
154PS / 2415-5080414		1H. H013	- 8. HUTL	1.4	LER. HITLY		31.42	12.77	102.53	111.1681	31.0	2000	4(347	
10075 734104-082968		101.07203	-8.10112	5.0	198.94117	-1.1623	11.42	12.77	117.54	112.10001	21.2	2005	- QHP	
10045-1243354+180358		154,9800		1.1	138, 92575		34,88	33,82	187.5	116.5	121.2	0000	43857	
150PE JOACO T-18TMA		181,005	18,85045		18, 69455	51,3045	825,248	18,255		1.9578	-5.	THEFT		
10070-7244018-130614					198,02588		34,98		187.5			3872	47897	
TREE CONTRACTOR		1.81.12071	14h 24h64		1.81.47175	141.21017	891.841	1.8. 327		2.8	44	TABLEY		
TRAME PROPERTY.		UNU ADDORT	12.1510		135, 89427		251.111	11.121				857.041		
THEFT PROPERTY AND THE PARTY OF A		141,42414					10.100		14.51	18.55	1.	2000		
THEFT, CONCERNING OF STREET	- 4	181.02795	17.17213	2.4	134,00417	47.42927	312.168	10,020	- X.	1.32	26	100010		
TREES, P. Nov. 30, 44 POTTON		181,48041		5.4	135.44	24,22173	30.101	17.84			#1.2	104		
THEFT, P. D.M. PORA SAULUR		181,4683.1	14.33388	3.4	18. 00185		70.004		88.54	14.79		1000	0111	
FREES, P. Nation Condition		185.12263	2.6787	4.4	156,798		61.15	18.38	11.87207	15.52001	241.	104		
TREPS JOACSEAT LAD	- 6	LBL.Teen	181.87488		18.7981	-41,48,949	49,492		48.74	10.00	144.8	1000	40127	
ISSPECTATING CONTRACT		101.11209		1.	16.40	-10.1HH	PGB	13.37	78.33	+1.82	81.4	1000	400.78	
10075-7241421-072138		101.02983		3.4	181.8344	-41,92828	48,278	15.99	12.13	18.	4.	0405	(1117)	
160% / 24/184 2020/1		131.01415	- X 30347	4.4	182,89494		18,525	11.04	121.07225	114,90	24.	0405	43128	

2SXPS

GLADE Dayla et al 2018

Additional information to the 2SXPS catalog

- Multi-wavelength information from other catalogs (XMM-Newton Lumb et al 2012, Chandra Garmire et al 2003, USNO-B1 Monet et al 2003, 2MASS Cutri et al 2003)
- Galactic correlation with GLADE using TOPCAT Taylor 2005 $\rightarrow L_X$

asep

Introduction

ULX/HLX candidates selection

LX candidate in NGC 5917

Conclusion

The ULX/HLX sample

Producing a ULX/HLX sample

65.76	5		540	8190	RA/2203	26,/2200	847	Series.	851,102	MMOR	P.4.		P51, Mp	67005
							435,595				84.	THUR.		
		184,1936	[7,5546]		199, 21114	27,56487	201.012	15.04	14,27115	(5,8131)	65,7	144	84424	
9992 15KPE / 241457 820410		550,15455			139, 2254		245,576	15,045	45,50906	10,9952	54,	P2CM0	41476	
2000 10070 / 24100 5-272025		181,00405	17,52647		139,225		101,181	18,00	11,00000	9, 101417	121,2	114		
2994 12695 2241044-441122		(#1,)10)			188,21848		647,652	17,96				2-14		
1995 15595 JOH 104+504008	- 6	141,26505			188,38325	43,79883	w41,05h	17,79	24,81425	14, 80517	634.2	144	2443626	
2996 156P5 7241254-875665	- 6	L84, 30295			139, 31712		81,428	14,20	26,74	11, 81	131,6	20402		
		141.12284		2.4	188.17648	31,0001	71,100		8.3	10. HI	4.	1000		
PROB. I SHEPS, J. MILPO IN BOURS	- 4	181.17227	17, 19104	4.7	139.1728	17.10721	201,118	18.32	14.12087	15.12871	41.2	104	2614177	
	- 4	184.38185		2.4	139.39418		44,483	16.12	48.3	18.88	181.1	1000	42872	
		101.0005		8.7	198.307	10.4400	189.7	25,00	5.7288	1.47287	- C.	174		
AND TRAFF. / SATIMA- SHOULD	- 4	DOI: 19227	18.84117	5.2	129, 2019	21.04201	91,152	18.12	18.3	18.98	251.7	2002	42917	
4002 100PE_T241341+64DE34		184,9922	11,01348		139, 315	44,00423	181,922	16,73	24, 44292	17.83334	4.	114	22446322	
4005 150PE / SVITT 1+16403		181.43291	18,77745	18.	139.4098			15.274		2.124	-31.	TAND		
4004 100PE / 24102 (*16002)					130, 41844		1184,95				81.	2MAR		
1000 10093 / 24206 /- 871827	. 6	151,50524	10, 20041	4.5	139,53485	\$5,0000A	741,945	17,182		2,8	51.	INPUTX		
AND TRUES PROVIDE VIEWELL		101.07204		5.1	139.67682		531.02	18.75	16.57431	TH. \$2014		104	81753	
ann? TIPPE Charles Longage		181.188.14	18.74445	2.4	188 10488		661.183	14.04	14.12075		84.2	244		
ADDR. THEFT. CONTRACTORY 14	- 4	144.51244	-b.75417	6.7	139.641	-1.75313	661.165	15.04	14 73825		64.5	Sec.		
anne itares courrents and		184.82127		1.1	139 82684		391.481			1.44	101.	Distantia .		
along states, chapper to think a	- 6	181.88424			188.825				105.41963		141.8	Date:	41411	
and there, course to the second	- 4	LHL NGAT	11.0079	4.4	139.001	11.00203	27,7921	8.7	105, 11102	TIL DIGILI	241.8	104	(2011)	
4112 100PG / 24147 4,302 H4	- 4	181.04793	- 8. PHI/8	4.2	LPR. STITL	-1.16241	211.814	18,49	39.44345	19.33942	149.8	114		
ALLS I SAPE P MINISTRATA		DH. H003	- 8. HUTL	1.4	THE HITTY	-1.903	31.42		102.53	111.1691	31.2	2000	4(347	
2012 100PE / 341024 08295A		DH. 19903	-8.10112	5.1	199.94117	-1.1623	11.42	12.77	117.14	112.10001	21.2	2005	- QHP	
4013 100FL/247354+18CDA		154,9800		1.1	139, 92575		34,88	32,82	187.5	116.5	171.7	0000	43857	
ALLA TRAFF, POLICY T-TRENA		181,005	18,85045		180,01455	51,3045	825,748	18,255		1.9578	-5.	20020		
617 100PE / 24407 8-130484					198, 57555		34,98		187.5			3872	47897	
ALL TREE CONTRACTOR		1.81.12071	14h 24h64		1.81.47175	141.21017	891.841	18.327		2.8	44	TABLEY		
AREA INVESTIGATION AND INC.		DOL: ADDRESS	12.1510		105.89927		251.111	11.101				857.041	- NUM	
ARTICL LEWIS OF NAMES AS A DESIGNATION OF		181,43814					10.100		14.51	18.55	1.	2007	61043	
ARTS INVESTIGATION OF A	- 4	181 02790	17.17213	2.4	184,00417	47.42927	312.168	10,020	- X.	1.32	26	750-77		
ARTY I LEAVE & NAUNDAL POTTIN		LNL ABOVE		5.4	135.44	24,22173	30.101	17.84		2. SHEM	#1.2	104		
anna i riates, e has beta Sabire	- 6	LBL ABOUT	14.33388	3.8	180,00085		70.004		88.14	14.79	1.0	1000	0111	
and there, a hard harders		181.12263	2.6787	4.4	156,793	1.47224	61.15	18.28	11.87207	15.52001	241.	104		
ALOS I LOPE / DAVIS A MARY	- 4	LBL.TARB	181.87488	8.1	18.7981	-41,48,949	49,492	18.72	48.74	10.00	544.8	1000	40127	
and instruction and her Arrest		101.11209		1.	16.40	-10.1HH	PGB	13.37	78.33	+1.82	81.4	1000	400.78	
2027 10095 2221421 072138		181, 12183		3.4	181.8244	-41,92828	48,278	15.99	10.01	18.	4.	15462	(100)	
AND LOOKE CONTRACTORY	- 21	151 (1675)	A TIME		187 Plana		11.575	11.04	110.00000	174.00		Land C	41178	
and the second s														

2SXPS

GLADE Dayla et al 2018

The ULX/HLX sample

- 2169 candidates Godet, Pellouin, Tranin et al, in prep
- Selection process:
 - GLADE association
 - Unabsorbed $L_X \ge 10^{39} \text{ erg} \cdot \text{s}^{-1} (0.3 10 \text{ keV})$
 - Not located in the galactic center
 - Detection flag: Good

Clément Pellouin

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
0000000000	0000000000	000000000000000000000000000000000000000	000000	00000000000000
The ULX/HLX sample				
Finding ref				
Finding re	lerence sources			

asep

Introduction

ULX/HLX candidates selection

HLX candidate in NGC 5917

Conclusion

The ULX/HLX sample

Classifying the sources of the ULX/HLX sample

Classification algorithm

- Probabilistic classification based on the properties observed in the reference sample
- 2169 sources classified as AGNs (43%), XRBs (52%), Stars (3%), CVs (cataclysmic variables, 1%) Tranin, Pellouin et al, in prep

Using the ULX/HLX sample, two main objectives:

- Cleaning the ULX/HLX sample
- Analyzing the best ULX/HLX candidates

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup	
	0000000000				
ULX/HLX sample cleaning					

Classification analysis

Analysis of the classes distribution:

	Refere	nce	ULX/HLX x Ref.		ULX/HLX (prediction)	
Class	Count	%	Count	%	Count	%
AGN	20799	77	134	42	943	43
Star	5181	19	19	6	74	3
XRB	475	2	165	52	1138	52
CV	370	1	1	0	14	1

Comparison of statistics on the classes of sources

Conclusions

- ULX/HLX definition non-physical, but many XRBs retrieved in the ULX/HLX sample
- Potentially high level of AGN contamination
- Contaminants are mostly background AGNs instead of foreground stars

usep

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
	00000000000			
ULX/HLX sample cleaning	ng			
<u>.</u>				

Classification analysis

Conclusions

- ULX/HLX definition non-physical, but many XRBs retrieved in the ULX/HLX sample
- Potentially high level of AGN contamination
- Contaminants are mostly background AGNs instead of foreground stars

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup		
	00000000000					
ULX/HLX sample cleaning						
Classification analysis						

How to select the best ULX/HLX candidates among the 2169 sources?

Prediction	AGN	Star	XRB	CV
Literature				
AGN	132	1	2	0
Star	2	17	0	0
XRB	42	7	84	2
CV	0	0	1	0

Confusion matrix of the classification source types

Focusing only on the sources classified as XRBs?

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
	00000000000			
ULX/HLX sample cleani	ng			

Identification of new selection parameters

Distribution of the unabsorbed X-ray peak luminosity for the sources of the cross-correlated sample. In blue, sources whose known class is AGN, in yellow, those that are XRBs, in green, sources found in catalogs of ULXs

OSep

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup	
	00000000000				
ULX/HLX sample cleaning					

Identification of new selection parameters

Parameter	Criterion (ULX)	Sources	%	Criterion (HLX)	Sources	%
LX	\leq 5 \times 10 ⁴¹ erg $\cdot \cdot \cdot^{-1}$	1529	70	$\in [10^{41}, 10^{43}] erg \cdots ^{-1}$	626	29
Variability	> 1	1817	84	> 1	1817	84
Distance	\leq 100 Mpc	1438	66	\leq 400 Mpc	1877	87
Combined		1221	56		415	19

Classification parameters

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup	
	0000000000				
ULX/HLX sample cleaning					

Identification of new selection parameters

Objective = Finding interesting sources to study:

- Focus on sources that are in a MUSE cube (400/2169)
- Focus on sources with other multi-wavelength observations
- Focus on sources with XMM-Newton and/or Chandra observations

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		●000000000000000000000000000000000000		

HLX candidate in NGC 5917

Introduction 0000000000 X-ray data analysis ULX/HLX candidates selection

HLX candidate in NGC 5917

Conclusion

2SXPS J152131.9-072242

Swift-XRT image of 2SXPS J152131.9-072242

Fact sheet

- RA(J2000): 15^h 21^m 31.99^s
- Dec(J2000): -07° 22′ 42.4″
- Associated with NGC 5917, interacting spiral galaxy
- 9" (1.3 kpc) away from the galactic center
- *d_{NGC5917}* = 30.8 Mpc

VLT image of NGC 5917 and MCG-01-39-003

Introduction 0000000000	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 000000000000000000000000000000000000
X-ray data analysis				

Swift-XRT raw data processing

Preprocessing steps, using XSELECT

- Produce a clean, stacked event list (events = photons detections on the CCD)
- Produce an exposure map (dead pixels & columns, vignetting)
- Take into account the CCD temporal and spectral response to incoming photons
- Filter bad events

Exposure map for the Swift-XRT observations of NGC 5917

Clément Pellouin

M2 ASEP

M2 Internship Presentation

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
X-ray data analysis				
X-ray light	curve			

Left: Light curve showing the 2 series of observations observations of 2SXPS J152131.9-072242 taken between 2005-06-04 and 2020-08-28, in the 0.3 - 10 keV band. Every bin has a 20-count statistic. **Right:** Zoom on the light curve between 2005-06-04 and 2005-07-23.

M2 ASEP

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
X-ray data analysis				

X-ray spectral analysis

Swift-XRT Photon Counting spectrum of 2SXPS J152131.9-072242 (observations from 2005-06-04 to 2020-04-30). Minimum of 20 counts per bin. Errors at a 1σ confidence level. Solid line corresponds to the best fit using an absorbed power-law model.

Obtained using XSPEC Arnaud 1996

Parameter	Value \pm error (1 σ)
N _H	$(2.0^{+0.9}_{-0.7}) imes 10^{21}~cm^{-2}$
Galactic N _H	$6.7 imes 10^{20} \ cm^{-2}$
Г	$\textbf{2.0}\pm\textbf{0.2}$
Unabsorbed L_X (0.3 – 10 keV)	$(3.1\pm0.3)\times10^{40}~\text{erg}\cdot\text{s}^{-1}$
Peak unabsorbed L_X	$8.8 imes10^{40}~erg\cdot s^{-1}$
χ^2 / dof	32.82/29

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				
MUSE dat	a analvsis			

 $\begin{array}{l} \textbf{MUSE} = \textbf{Integral field Unit (IFU) taking data cubes (300 \times 300 pixels, \sim 3500\text{-bins} \\ \textbf{visible spectra from 4750 Å to 9350 Å)} \\ \textbf{Bacon et al 2010} \end{array}$

Clément Pellouin	M2 ASEP	M2 Internship Presentation	September 30th, 2020	25/39

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

Spectral fitting

Fitting technique

- Based on the Python library mpdaf
- Emission lines fitted by gaussian profiles
- χ^2 minimization
- Output parameters: wavelength of the peak, peak value, FWHM, continuum, integrated flux under the gaussian, 1σ errors on these parameters

Spectrum of MUSE cube pixel located at the center of the Swift-XRT error circle

moster

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				
<u> </u>				

Spectral ray luminosity maps

Integrated flux under the fitted gaussian on the H α emission line

OSEP

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				
0				

Spectral ray luminosity maps

Integrated flux under the fitted gaussian on the [OI] emission line

OSep

ntroduction ULX	/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
	00000000	000000000000000000000000000000000000000		
MUSE data analysis				

Spectral ray luminosity maps

Top row, left to right: $H\alpha$, $H\beta$, [OIII]. Bottom row: [SII], [NII], [OI]

moster **OSE**

M2 ASEP

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

Velocity maps

Emission line redshift velocity: $v = c \times \frac{\lambda_{obs} - \lambda_{ref}}{\lambda_{ref}}$

Velocity map of NGC5917 from the [OI] emission line fitting. Each pixel color represents the relative velocity computed from the gaussian fit of the emission line

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

-

NGC 5917 @6601.25 Å

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

NGC 5917 @6602.5 Å

-

OSEP

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
0000000000	0000000000	000000000000000000000000000000000000000	000000	000000000000000000000000000000000000000
MUSE data analysis				

NGC 5917 @6603.75 Å

-

imes 10⁻²⁰ erg \cdot s

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
0000000000	0000000000	00000000000000000000000000000000000000	000000	000000000000000000000000000000000000000
MUSE data analysis				

NGC 5917 @6605 Å

OSEP

-

 $\times 10^{-20}~\text{erg}\cdot\text{s}^-$

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

NGC 5917 @6606.25 Å

$\times 10^{-20}~\text{erg}\cdot\text{s}^-$

-

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

NGC 5917 @6607.5 Å

 $\times 10^{-20} \text{ erg} \cdot \text{s}^-$

-

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

 $\times 10^{-20}~\text{erg}\cdot\text{s}^-$

-

NGC 5917 @6608.75 Å

Introduction 0000000000	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 000000000000000000000000000000000000
MUSE data analysis				

Velocity maps

Top row, left to right: $H\alpha$, $H\beta$, [OIII]. Bottom row: [SII], [NII], [OI]

asep

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

BPT Diagnostic

Characteristics

- Introduced by Baldwin, Phillips and Telervich Baldwin et al. 1981
- Originally proposed to diagnose AGNs, Low-Ionization Nuclear Emission-line Regions (LINER), and HII ionization regions
- Now also used to probe the local gas ionization mechanism:
 - photo-ionization due to UV photons from young, hot stars;
 - photo-ionization from accretion activity;
 - shock ionization
- Uses 3 different line ratios plots:
 - [OIII]/H β versus [NII]/H α
 - [OIII]/Hβ versus [SII]/Hα
 - $\blacksquare \text{ [OIII]/H}\beta \text{ versus [OI]/H}\alpha$

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		000000000000000000000000000000000000000		
MUSE data analysis				

BPT diagnostic of NGC 5917

BPT Diagnostic

BPT diagnostics for different emission line ratios in NGC 5917

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
		0000000000000000000000000000		
MUSE data analysis				

BPT Diagnostic

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
			00000	

Conclusion

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
			00000	

Conclusion

- Search for IMBHs and super-Eddington accretion
- X-ray catalogs correlated with multi-wavelength catalogs
- ULX/HLX candidates sample (2169 candidates)
- Tools to clean the sample (1221 candidates)
- Focus on sources with MUSE cubes (400/2169)
- 3 good candidates identified
- Multi-wavelength approach to study them

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
			000000	

Analysis of the best candidates

In NGC 5917

- Swift-XRT X-ray observations:
 - Average unabsorbed luminosity $L_X = (3.1 \pm 0.3) \times 10^{40} \text{ erg} \cdot \text{s}^{-1}$
 - Flux variation by a factor \sim 4 between 2005 and 2020
- MUSE observations:
 - NGC 5917 rotating as a whole
 - An optical source showed a more intense [OI] line emission
 - BPT diagnostic showed gas ionization due to accretion in this region
- Probable association of the optical counterpart to the X-ray source

Other sources studied

- In NGC 3252
 - Source vanished between 2011 and 2020 (more than 40 times fainter)
 - Swift-UVOT counterpart found
- In NGC 3583
 - Source found using my selection method
 - HST observations show structures, likely star-forming, in the region of the source

usep

ntroduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
			000000	

Perspectives and continuations

Perspectives

- Study of the X-ray luminosity function
- Systematic study of the host galaxies properties (interacting, dwarf, spiral, star-forming, ...)
- Analysis of the reference sample contamination rates
- Determination of the fraction of background sources using MUSE cubes
- Using HST analyses for more sources

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
			000000	

Perspectives and continuations

Proposals

- XMM-Newton observation of NGC 3252 at the end of the year
- Possible observation of NGC 5917 and NGC 3583 by Swift in 2021-2022 (proposal submitted) and by XMM-Newton (proposal in prep Pellouin 2020)

Papers

- Presentation of the ULX/HLX candidates sample Godet, Pellouin, Tranin et al, in prep
- Classification of X-ray sources: an example with 2SXPS Tranin, ..., Pellouin et al, in prep.
- NGC 5917 HLX candidate discovery Pellouin et al, in prep.
- NGC 3252 analysis following XMM-Newton observations Tranin et al, in prep.
- NGC 3583 HLX candidate discovery Pellouin et al, in prep.

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
			000000	

Thanks!

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup ●000000000000000000000000000000000000

Spectral fitting

Distribution of the distances to the galactic center (in arcsec)

OSep

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup 0●00000000000000000000000000000000000

Spectral fitting

Spectrum of MUSE cube pixel located at the center of the Swift-XRT error circle

Introduction 0000000000	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup 00●0000000000000000000000000000000000	
Spectral fitting					

Gaussian fitting of H_{α} : $\lambda_{obs} = 6606.4 \text{ Å}$

Zoom on the spectral fitting of the H α emission line

OSEP

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 000●0000000000

Spectral fitting

Zoom on the spectral continuum of the MUSE cube pixel located at the center of the Swift-XRT error circle

Clément Pellouin	M2 ASEP	M2 Internship Presentation	September 30th, 2020	39 / 39

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup
				000000000000000000000000000000000000000

MUSE spectra of the foreground stars

Spectrum of the bottom, low-mass type M star

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup 00000●00000000

Luminosity Function

Luminosity function of the sources in the ULX/HLX catalog. Blue: total catalog. Orange: Filtered catalog.

Swartz et al. 2011 showed that the differential ULX luminosity function shows a power law slope $\alpha \propto -1.2$ to -2.0 with an exponential cutoff at $\sim 2 \times 10^{40}$ erg \cdot s⁻¹ moster OSE

Introduction 0000000000	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 000000●0000000

NGC 3252

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 0000000●000000

Light curve of 2SXPS J103423.1+734519, located in NGC 3252, in the 0.3 - 10 keV band.

Spectrum of the source using the observations from 2010.

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion	Backup 000000000000000000000000000000000000

Parameter	Value \pm error (1 σ)
N _H	$(1.2^{+0.5}_{-0.4}) imes 10^{21} \ cm^{-2}$
Galactic N _H	$4.6 imes 10^{20} \ cm^{-2}$
Г	$2.23^{+0.18}_{-0.16}$
Unabsorbed L_X (0.3 $-$ 10 keV)	$1.8 imes 10^{41} \text{ erg} \cdot \text{s}^{-1}$
Peak unabsorbed L_X	$7.1 imes 10^{41} \text{ erg} \cdot \text{s}^{-1}$
χ^2 / dof	48.5/42

Spectral fit parameters using data from 2010

_

roduction 000000000	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 00000000000

Swift-UVOT observation of 2SXPS J103423.1+734519 from 2010-2011 in the UVW2 filter.

00

39/39

Swift-UVOT observation from 2019 in the UVW2 filter.

Filter	UVW2	UVM2	UVW1	U	В	v
λ (A)	1928	2246	2600	3465	4392	5468
2010-2011	21.89 ± 0.29		20.52 ± 0.53	20.72 ± 0.16	19.63 ± 0.30	> 19.51
2019	> 22.58	> 21.70	> 21.52	> 22.91		

AB magnitudes of the optical counterpart of 2SXPS J103423.1+734519 in different swift-UVOT filters, using stacked observations from NGC 3252. Upper limits are computed at 3σ .

Clément Pellouin M2 ASEP	M2 Internship Presentation	September 30th, 2020
--------------------------	----------------------------	----------------------

Introduction 00000000000	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 0000000000●000

NGC 3583

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 00000000000000000

band.

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 00000000000000000

Parameter	Value \pm error (1 σ)
N _H	$(1.4^{+0.9}_{-0.8}) imes 10^{21} \ cm^{-2}$
Galactic N _H	$2.4 imes10^{20}\ cm^{-2}$
Г	$1.76^{+0.28}_{-0.26}$
Unabsorbed L_X (0.3 – 10 keV)	$(4.4^{+0.5}_{-0.6}) imes 10^{41}~\text{erg}\cdot\text{s}^{-1}$
Peak unabsorbed L_X	$1.7 imes 10^{41} \text{ erg} \cdot \text{s}^{-1}$
χ^2 / dof	18.68/24

Spectral fit parameters using data from 2015 and 2020

Introduction	ULX/HLX candidates selection	HLX candidate in NGC 5917	Conclusion 000000	Backup 00000000000000

HST image of NGC 3583, in the F814W filter (IR at 8043 Å), taken on 2018-05-14 (exposure time: 1.8 ks)

