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The mystery of ultra-high energy cosmic rays (UHECRs)

• Cosmic rays: high energy atomic nuclei (protons, iron nuclei, etc)

• Most energetic particles in the universe (ultra-high energy cosmic rays: 𝐸 > 1018𝑒𝑉) 

• Where do they come from?
• At the lowest energy: Solar origin

• Intermediate energy: SNR 

(galactic origin) 

• Ultra-high energy: ? 

Very low flux:

𝟏. 𝒌𝒎−𝟐. 𝒄𝒆𝒏𝒕𝒖𝒓𝒚−𝟏

We don’t know the exact nature  

of these particles

We don’t know the sources

We don’t know the acceleration

mechanisms

UHECRs



Ultra-high energy multi-messengers (UHE)!

probe the most powerful sources in the Universe

understand the origin of ultra-high energy cosmic rays
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?

+ Gravitationnal waves



Interaction of high energy astroparticles with the atmosphere: shower/cascade of 

secondary particles!

Extensive air showers (EAS)

• Hadronic component: mainly

π decaying into μ and ν

• Electromagnetic part: 𝑒+, 𝑒−, 

We can detect the signal originating from the electromagnetic part with

radio antennas!

Main emissions:

• Cherenkov light

• Fluorescence light

• Radio emission

atmosphere
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ντ
>30 km

few

kms

GRAND : Giant radio array of 200 000 radio antennas over 200 000 𝑘𝑚2

Geomagnetic effect:

Radio signal:

quelques 100 MHz

Inclined showers with mountains as targets
cr, 

GRANDProto300 
first prototype in 

2021!

GRAND and GRANDproto300

Prototype of 300 antennas, 200km²

Detection of astroparticles with Erange

= 1016.5-1018 eV

Detection of air showers induced by 

ultra-high energy astroparticles

τ

θc ~1°

~400 m~400 m

~10 km

Xmax

vertical 

shower

dense array 
needed
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• Autonomous detection of astroparticles

Current experiments: external triggers (Cerenkov tanks, scintillators)

GRAND: radio antennas only

We have to identify the radio signal among the noise!

Current experiments: vertical showers (θ < 70°)

GRAND detection of inclined showers

(θ > 70°)

Asymmetries, ground reflections effects

Polarisation : Promising

method to tackle those

challenges!

GRANDProto300: Challenges of radiodetection

• Reconstruction of shower parameters

Overwhelming

noise from human

emissions

Grail of radiodetection!

Schröder (2019)



Charge excess emission

• Accumulation of negative

charges close to the 

shower core

• Radial polarisation

• ≈ 10% of the amplitude of 

the total emission for 

vertical air showers

Geomagnetic emission

• Induced dipole with 𝐁geo

• Polarisation along -𝒗 × 𝑩

• Main contribution to the 

radio signal

• Complex polarisation signature: allows to discriminate the signal from the noise

• Charge excess signature: gives insights about the core position
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Polarisation of the radio signal

Schröder (2017)

Polarisation: direction of the electric field



gaussian noise (rms: 20 μ𝑉/𝑚)
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Traces processing

Account for experimental detection effects

ZHAireS Simulations (Alvarez-Muñiz et al. 2011)

Outputs: Traces Ex(t), Ey(t), Ez(t) at each antenna

sampling (2ns)

filtering

(50-200 

MHz)
Time (ns)

Time (ns)

Time (ns)

Time (ns)
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Shower plane

• Outputs of the simulations: 

Ex(t), Ey(t), Ez(t)

• We want to derive Ev(t), 

Evxb(t), Evxvxb(t)

i: inclination of the magnetic field

θ: zenith angle

ϕ: azimuth of the shower

𝒖𝑩 = cos 𝑖 𝒖𝒙 − sin 𝑖 𝒖𝒛

𝒖𝒗 = sin θ cosϕ𝒖𝒙 + sin θ sinϕ𝒖𝒚 + cos θ𝒖𝒛

We can derive 𝒖𝒗×𝑩 and 𝒖𝒗×𝒗×𝑩 from 𝒖𝒗 and 𝒖𝑩 and thus 𝐸𝑣(𝑡), 𝐸𝑣×𝐵(𝑡) and 𝐸𝑣×𝑣×𝐵(𝑡)

Schellart et al. (2015)

extensive air shower

shower plane 

géomagnétique excès de chargesgeomagnetic charge excess
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Stokes parameters

• Stokes parameters I,Q, U, V: standard method to reconstruct the polarisation 
(Schoorlemmer 2012)

• 𝑥𝑖 = 𝐸𝑣×𝐵 𝑡𝑖 , 𝑦𝑖 = 𝐸𝑣×𝑣×𝐵 𝑡𝑖 ,

• ෝ𝑥𝑖, ෝ𝑦𝑖,  Hilbert transform of 𝑥𝑖 , 𝑦𝑖, i.e., extension of the traces in the complex

domain

Stokes parameters
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11

Reconstruction of the polarisation

• We have to define a time window over which we average the traces

• Stokes parameter I: Related to the total intensity of the traces

Time window: Fwhm of the I parameter

ϕp = 0.5 tan−1
𝑈

𝑄

E𝒗×𝑩 = < 𝑰 > cosϕp

E𝒗×𝒗×𝑩 = < 𝑰 > sinϕp

ϕ𝑝: angle between the polarisation and 

the 𝑣 × 𝐵 direction

53°
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Reconstruction of the polarisation

Various methods to reconstruct the polarisation:

absolute value, max value, Stokes parameters…

Total polarisation essentially along −v × 𝐵

Dominant geomagnetic emission

Separation of each mechanism: (Huege et al. 2019)

Total polarisation

 Signatures to identify the radio signal

 Reconstruction of the air shower core position

ϕ𝐨𝐛𝐬

géomagnétique excès de chargesgeomagnetic charge excess

Total polarisation



Signal identification
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Ratio of the amplitude of each mechanism

For different simulations

a = sin α
Echarge excess

Egeomagnetic

Ratio below 1% for inclined

air showers

Dominant contribution of 

the geomagnetic emission

for inclined showers

geomagnetic charge excess

Signal 

identification

Reconstruction

of the core

position

• Total field orthogonal to B

• Strong signature of the radio 

signal visible directly at the 

antenna level

• Could be implemented in the 

trigger hardware of GRAND 

antennas



Shower core econstruction

a = sin α
Echarge excess

Egeomagnetic

The ratio drops to 0 at the core

Increase with the distance to the core

Estimation of the shower core as the position 

that minimizes the ratio

Distance to the shower core [m]
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Method

• In fact, we used the fraction of the total 

electric field along B (Eb/Etot)

• For several positions we compute the mean

ratio measured by the 20 closest antennas

• Core estimation: position with the lowest

measurement

Still a preliminary work, but promising for showers with θ ≤ 𝟓𝟓°

53°

𝐸𝑏 = 𝑬𝒕𝒐𝒕 ∙ 𝒖𝑩
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Conclusion

Aim: Understanding the origin of ultra-high energy cosmic rays

• Multi-messengers approach to tackle this challenge  

• Detection of the radio signal from extensive air showers induced by UHE astroparticles

GRANDProto300: Prototype of 300 antennas for the detection of UHE astroparticles

• Identification of the radio signal among the noise

• Reconstruction of the shower parameters

Results:

• Electric field orthogonal to B 

for inclined showers

• The charge excess to 

geomagnetic ratio increases

with distance to the core

Signal 

identification

Reconstruction

of the core

position


