Looking for ultra-high energy astroparticles in a radio haystack

Supervisors: Kumiko Kotera (IAP), Olivier Martineau (LPNHE) Simon Chiche – Institut d'Astrophysique de Paris

The mystery of ultra-high energy cosmic rays (UHECRs)

- Cosmic rays: high energy atomic nuclei (protons, iron nuclei, etc)
- Most energetic particles in the universe (ultra-high energy cosmic rays: $E > 10^{18} eV$) • **Where do they come from?**

- At the lowest energy: Solar origin
- Intermediate energy: SNR (galactic origin)
- **Ultra-high energy: ?**

We don't know the exact nature of these particles

We don't know the sources

We don't know the acceleration mechanisms

Very low flux: $1.$ km $^{-2}$. century $^{-1}$

Ultra-high energy multi-messengers (UHE)!

 \checkmark probe the most powerful sources in the Universe \checkmark understand the origin of ultra-high energy cosmic rays

+ Gravitationnal waves

ν

?

 π^0

Extensive air showers (EAS)

Interaction of high energy astroparticles with the atmosphere: shower/cascade of secondary particles!

- Hadronic component: mainly π decaying into μ and ν
- Electromagnetic part: e^+, e^-, γ

Main emissions:

- Cherenkov light
- Fluorescence light
- Radio emission

-
- We can detect the signal originating from the electromagnetic part with radio antennas!

GRAND and GRANDproto300

GRAND : Giant radio array of 200 000 radio antennas over 200 000 km^2

GRANDProto300: Challenges of radiodetection

• Autonomous detection of astroparticles

Grail of radiodetection!

Current experiments: external triggers (Cerenkov tanks, scintillators)

GRAND: radio antennas only

Overwhelming noise from human emissions

We have to identify the radio signal among the noise!

• Reconstruction of shower parameters

Current experiments: vertical showers (θ < 70°)

GRAND detection of inclined showers $(\theta > 70^\circ)$

Asymmetries, ground reflections effects

Polarisation : Promising method to tackle those challenges!

யி

ے
نبا

6

Polarisation of the radio signal

Polarisation: direction of the electric field

- Complex polarisation signature: allows to discriminate the signal from the noise
- Charge excess signature: gives insights about the core position

Traces processing

ZHAireS Simulations (Alvarez-Muñiz et al. 2011)

Outputs: Traces Ex(t), Ey(t), Ez(t) at each antenna

Account for experimental detection effects

Shower plane

- Outputs of the simulations: $Ex(t)$, $Ey(t)$, $Ez(t)$
	- We want to derive $Ev(t)$, Evxb(t), Evxvxb(t)

i: inclination of the magnetic field

θ: zenith angle

ϕ: azimuth of the shower

 $u_B = \cos i u_x - \sin i u_z$

$$
u_v = \sin \theta \cos \phi \, u_x + \sin \theta \sin \phi \, u_y + \cos \theta \, u_z
$$

We can derive $u_{\nu\times B}$ and $u_{\nu\times \nu\times B}$ from u_{ν} and u_{B} and thus $E_{\nu}(t)$, $E_{\nu\times B}(t)$ and $E_{\nu\times \nu\times B}(t)$

Stokes parameters

- Stokes parameters I,Q, U, V: standard method to reconstruct the polarisation (Schoorlemmer 2012)
- $x_i = E_{v \times B}(t_i), y_i = E_{v \times v \times B}(t_i),$
- $\widehat{x_i}, \widehat{y_i}$, Hilbert transform of x_i, y_i , i.e., extension of the traces in the complex domain

Stokes parameters

Reconstruction of the polarisation

- We have to define a time window over which we average the traces
- Stokes parameter I: Related to the total intensity of the traces

Reconstruction of the polarisation

Total polarisation

Various methods to reconstruct the polarisation: absolute value, max value, Stokes parameters…

Total polarisation essentially along $-v \times B$

Dominant geomagnetic emission

Separation of each mechanism: (Huege et al. 2019)

$$
E_{\rm ce} = \frac{E_{\rm vxvxB}}{|\sin \phi_{\rm obs}|} \qquad E_{\rm geo} = E_{\rm vxB} - E_{\rm vxvxB} \frac{\cos \phi_{\rm obs}}{|\sin \phi_{\rm obs}|}
$$

 Signatures to identify the radio signal $→$ **Reconstruction of the air shower core position**

Signal identification

Ratio of the amplitude of each mechanism

1% level

 $E = 0.117$ EeV $E = 0.681$ EeV

 $E = 3.981 EeV$

For different simulations

Ratio below 1% for inclined air showers

Dominant contribution of the geomagnetic emission for inclined showers

- Total field orthogonal to B
- Strong signature of the radio signal visible directly at the antenna level
- Could be implemented in the trigger hardware of GRAND antennas

Shower core econstruction

$$
a = \sin \alpha \frac{E_{charge\ excess}}{E_{geomagnetic}}
$$

The ratio drops to 0 at the core

Increase with the distance to the core

Estimation of the shower core as the position that minimizes the ratio

Method

$$
E_b = \boldsymbol{E_{tot}} \cdot \boldsymbol{u_B}
$$

- In fact, we used the fraction of the total electric field along **B** (Eb/Etot)
- For several positions we compute the mean ratio measured by the 20 closest antennas
- Core estimation: position with the lowest measurement

Still a preliminary work, but promising for showers with $\theta \leq 55^{\circ}$

Conclusion

Aim: Understanding the origin of ultra-high energy cosmic rays

- Multi-messengers approach to tackle this challenge
- Detection of the radio signal from extensive air showers induced by UHE astroparticles

GRANDProto300: Prototype of 300 antennas for the detection of UHE astroparticles

- Identification of the radio signal among the noise
- Reconstruction of the shower parameters

Results:

- Electric field orthogonal to **B** for inclined showers
- The charge excess to geomagnetic ratio increases with distance to the core

median of the charge excess to geomagnetic ratio