### JC @ IAP 25/3/2021

**Gill, Granot & Beniamini:** GRB spectrum from gradual dissipation in a magnetized outflow (arXiv 2008.10729v2)

#### **Magnetic jet: acceleration**

The acceleration of a magnetic jet can proceed either by **dissipation of magnetic field** (if the magnetic field has the right geometry and scale), or by **adiabatic expansion** of the outflow.

magnetization parameter:

$$\sigma = \frac{B^2}{4\pi(\rho'c^2 + p')\Gamma^2} = \frac{{B'}^2}{4\pi(\rho'c^2 + p')}$$

conservation of energy flux:

$$R^2 \left[ \pi \rho' c^2 \Gamma^2 v + B'^2 \Gamma^2 v / 4 \right] \theta_j(R)^2 = L$$

conservation of mass flux:

 $\pi R^2 \theta_j(R)^2 \rho' \Gamma v = \dot{M}$ 

 $\Gamma(1+\sigma) = L/\dot{M}c^2 = \Gamma_0(1+\sigma_0)$ 

Goldreich & Julian 1970 Granot 2011 Drenkhahn 2002

$$\Gamma \approx \sigma_0^{1/3}$$

#### Magnetic jet: energy dissipation

The rate of magnetic energy dissipation is governed by the reconnection rate between neighbouring regions of different field line direction.

The reconnection time scale = (variation length scale) /  $v_{in}$  $v_{in}$  = velocity at which field lines of different directions are brought togehter



Kumar & Zhang 2015

#### **Flow dynamics**

- steady Poynting flux dominated relativistic spherical flow, with a striped wind magnetic field structure
- characteristic length scale  $\lambda$  over which B field lines reverse polarity is set by the central engine's rotational angular frequency,  $\lambda \sim \pi c/\Omega \sim 10^7$  cm

Magnetic energy is dissipated in the flow when field lines of opposite polarity are brought together and undergo reconnection.

$$\Gamma(r) = \Gamma_{\infty} \left(\frac{r}{r_s}\right)^{1/3}, \qquad r_A < r < r_s,$$

$$\Gamma(r > r_s) \approx \Gamma_{\infty} \approx \Gamma_0 \sigma_0 = \sigma_0$$

$$r_s = \frac{\Gamma_{\infty}^2 \lambda}{6\epsilon} = 1.7 \times 10^{13} \Gamma_{\infty,3}^2 \left(\frac{\lambda}{\epsilon}\right)_8 \text{ cm}$$

⇒ further dissipation can still occur due to internal shocks which become efficient when  $\sigma < 1$ 

 $L_{\Omega} = L_{B,\Omega} + L_{k,\Omega} + L_{\gamma,\Omega}$ 



#### **Energy dissipation and particle acceleration**

 energy is dissipated gradually in the flow as magnetic field lines of opposite polarity come into contact and undergo magnetic reconnection

The rate of energy dissipation:

$$\frac{dL_{\text{diss},\Omega}}{dr} = -\frac{dL_{B,\Omega}}{dr} = -\frac{d}{dr} \left[ L_{\Omega} \left( 1 - \frac{\Gamma}{\Gamma_{\infty}} \right) \right] = \frac{1}{3} \frac{L_{\Omega}}{\Gamma_{\infty}} \frac{\Gamma}{r} \propto r^{-2/3}$$

$$L_{\mathrm{diss},\Omega}(< r) \propto r^{1/3}$$
 at  $r_0 < r < r_s$ 

Half of the dissipated energy goes directly into the flow's kinetic energy, while the other half goes towards particle acceleration. It is divided between electrons ( $\epsilon_e E_{diss}/2$ ) and protons ((1 -  $\epsilon_e$ )  $E_{diss}/2$ ), where most of the latter energy is also typically quickly converted into kinetic energy. Acceleration of electrons (Beniamini & Giannios 2017):

$$dn' \propto \gamma_e^{-p} d\gamma_e \qquad p = 4\sigma^{-0.3}$$

+ only a fraction  $\zeta$  < 1 of electrons is accelerated during magnetic reconnection, and the remaining fraction (1-  $\zeta$ ) forms a thermal distribution

#### **Numerical treatment**

- one-zone kinetic code (Gill & Thompson 2014), lacking spatial and angular information of the flow and the radiation field. The emission is approximated to arise from a blob of comoving causal size r/F, that is radially localized
- Compton scattering, cyclo-synchrtoron emission and self-absorption, pair production and annihilation, Coulomb interaction among the pairs
- magnetic energy dissipation commences when the flow is highly optically thick  $\tau = 100$ . Wien-like spectrum:

$$\frac{dn'_{\gamma}}{d\ln E'} = \frac{U'_0}{6(k_B T_{\rm th})^4} E'^3 \exp\left(-\frac{E'}{k_B T'_{\rm th}}\right)$$

• power law electrons emit synchrotron radiation with characteristic energies (p = 4 when  $\sigma = 1$  at  $r = r_s$ ):

$$E_m = \frac{\Gamma}{1+z}hv'_m = \frac{\Gamma}{1+z}\gamma_m^2\left(\frac{\hbar eB'}{m_e c}\right) \approx \frac{530}{1+z}\left(\frac{\epsilon_e}{\xi}\right)^2 \frac{L_{\Omega,52}^{1/2}}{\Gamma_{\infty,3}^2\left(\frac{\lambda}{\epsilon}\right)_8} \text{ keV} \quad (p=4)$$

$$E_{c} = \frac{36\pi^{2}}{1+z} \frac{\hbar e m_{e} c^{3}}{\sigma_{T}^{2}} \frac{\Gamma^{3}}{B'^{3} r^{2}} \approx \frac{2.6 \times 10^{-9}}{1+z} \frac{\Gamma_{\infty,3}^{2} r_{12}^{3}}{L_{\Omega,52}^{3/2} \left(\frac{\lambda}{\epsilon}\right)_{8}^{2}} \text{ keV}$$

$$E_{\rm sa} \sim \frac{\Gamma}{1+z} \left( \frac{h^3}{8\pi m_p} \frac{\xi L_{\Omega}}{\Gamma_{\infty}} \frac{1}{r^2 \Gamma} \right)^{1/3} \approx \frac{1.4}{1+z} \frac{\xi^{1/3} L_{\Omega,52}^{1/3}}{\Gamma_{\infty,3}^{1/9} \left(\frac{\lambda}{\epsilon}\right)_8^{2/9} r_{12}^{4/9}} \,\text{keV}$$





Note: Sironi & Spitkovsky 2014 find that  $p \ge 1.5$  for  $\sigma \le 50$ , which means that the synchrotron spectrum can become even harder than shown in the figure if  $\sigma$  is larger in the emission region

 $B'_6$  [G]

 $\langle \gamma_e \rangle - 1$ 

 $10^{14}$ 

 $\sigma$ 

 $10^{13}$ 

 $r \, [\mathrm{cm}]$ 

 $10^{12}$ 

• radial evolution of the spectrum, the corresponding particle distribution, and flow parameters in case  $\epsilon_e = 0.1$ 



alternative heating of particles: magnetic energy dissipation in the flow, e. g. due to MHD instabilities, leads to distributed heating of all electrons

$$\frac{dU'_{\rm diss}}{dt'} = \frac{1}{3} \frac{L_{\Omega}}{\Gamma_{\infty} r^3} \qquad \qquad dU'_e/dt' = (\epsilon_e/2) dU'_{\rm diss}/dt'$$

 the continuous heating and simultaneous cooling of particles drives their energy distribution to peak at a critical temperature at which point heating is balanced by cooling

$$k_B T'_{e,\text{crit}} = 138 \frac{\epsilon_e \Gamma_{\infty,3}^{5/3} r_{12}^{5/3}}{L_{\Omega,52} \left(\frac{\lambda}{\epsilon}\right)_8^{2/3}} \text{ keV } \approx 132 \frac{\epsilon_e}{\tau_{T,e}} \text{ keV}$$



- the two particle heating scenarios lead to different spectra and corresponding particle distributions
- In both cases, the spectrum exhibitis two main components: a thermal component peaking at 0.2-1 MeV and a non-thermal component extending to high energies from the thermal peak. The origin of the non-thermal component is different in the two scenarios
- when power-law electrons are injected into the dissipation region, the non-thermal component arises due to the fast-cooling synchrotron emission. It dominates the spectrum below the thermal peak < 50 keV, and above the thermal peak</li>
  1 MeV < E < 100 MeV. The low energy photon index: -1.6 < α < -1.2</li>
- when the dissipated energy is distributed among all the electrons (and the produced  $e^{\pm}$  pairs are subdominant), the non-thermal spectrum above the thermal peak arises due to Comptonization of the softer thermal peak photons. This also leads to softening of the spectrum below the thermal peak as Compton-Y parameter grows above unity when the flow becomes optically thin. The low energy photon index  $\alpha > -1$