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7.10.1 Adiabatic expansion and acceleration of a Poynting jet

We consider in this sub-section an axisymmetric, highly magnetized, time
independent outflow. The magnetization parameter of the outflow, �, is defined
as the ratio of Poynting flux and energy flux carried by particles,
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where B0, ⇢0 and p
0 are magnetic field strength, internal plus rest mass energy

density, and pressure as measured in the local plasma comoving frame; B and
� are magnetic field strength and outflow LF as measured in the CoE frame.
The base of the outflow is at R = R0, where the magnetization parameter is
�0 ⌘ �(R0) and the Lorentz factor is �0; �0 � 1.

The conservation of energy flux for a cold magnetized outflows governed by
the non-dissipative ideal MHD equations is
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where ✓j(R) is half-angular-size of the jet at radius R, v is the proper velocity
of the jet corresponding to �, and the second term is the Poynting luminosity
(electric field in the outflow comoving frame vanishes). The equation for the
conservation of mass flux is
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These two equations can be combined to give

�(1 + �) = L/Ṁc
2 = �0(1 + �0). (210)

As the outflow moves to larger distances, � decreases and � increases and their
product remains constant. According to these conservation laws, it is allowed
for the magnetic energy to be entirely converted to outflow kinetic energy, and
in that case the outflow LF attains a value of (1 + �0)�0 ⇡ �0. For a steady,

spherical, outflow, however, the LF stops increasing when � ⇡ �
1/3
0 (Goldreich

and Julian, 1970). The reason for this is that when � >⇠ �
1/3
0 , causal contact

is only maintained in a narrow region of the outflow and magnetic pressure
gradients can no longer accelerate the flow. To see this, let us consider a signal
propagating at a speed c

0
s
and at an angle ✓0 with respect to the radial direction

in the comoving frame. The signal speed and direction in the CoE frame are
cs and ✓. The 4-velocity in the outflow frame is �0

s
(1, c0

s
cos ✓0, c0

s
sin ✓0, 0), and

in the CoE frame �s(1, cs cos ✓, cs sin ✓, 0). Taking the outflow velocity and LF
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The acceleration of a magnetic jet can proceed either by dissipation of 
magnetic field (if the magnetic field has the right geometry  and scale), or by 
adiabatic expansion of the outflow. 


magnetization parameter:


conservation of energy flux:  


conservation of mass flux: 
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Magnetic jet: energy dissipation 

Fig. 33. A schematic sketch of current-sheet, and plasma from outside the sheet
flowing toward it, for Sweet-Parker magnetic reconnection. The sketch only shows
the region in the immediate vicinity of the current sheet. Magnetic field lines outside
of the sheet are curved away from the center of the current sheet.

basic configuration is a thin current sheet of width �
0, and length, `0

x
, where

magnetic field is dissipated due to its large gradient across this region. Plasma
carrying magnetic fields of strength B

0 flows into this region at speed v
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,

and is squirted out of the thin current sheet at proper-velocity v
0
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(see
Fig. 33). The basic features of Sweet-Parker reconnection for a relativistic
plasma – with magnetization parameter � � 1 — can be obtained from the
conservation of mass and energy flux at the surface of the current sheet, and
the pressure balance. The mass and energy flux conservation equations are
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where n
00
1 & n

00
2 are plasma densities outside and inside the current sheet,

respectively, as measured in the local plasma rest frame, and �
0
t
is the Lorentz

factor associated with the random velocity component of protons, in the mean
rest frame of plasma, inside the current sheet. The ratio of these equations
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where V 0
A
�
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A
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1mp)1/2 is the Alfv́en wave proper-velocity outside the
current sheet. If �0

t
were to be of order unity, then the Lorentz factor of the

plasma leaving the current-sheet is ⇠ �
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(Lyutikov and Uzdensky, 2003).
Lyubarsky (2005) has suggested that �0

out
⇠ 1, however, his argument is based

on making ad hoc assumptions regarding the length scale over which �
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Gill, Granot, Beniamini: 

The rate of reconnection set by the inflow 

plasma velocity, vin  = 𝜖 vA 

(a fraction 𝜖 ~ 0.1 of the Alfvén  speed)

The rate of magnetic energy dissipation is governed by the reconnection rate 
between neighbouring regions of  different field  line direction. 


The reconnection time scale  = (variation length scale) / vin

vin = velocity at which field lines of different directions are brought togehter 


 



Gill, Granot & Beniamini: GRB spectrum from gradual dissipation in a 

magnetized  outflow   

Flow dynamics 

steady Poynting flux dominated relativistic  spherical 
flow, with a striped wind magnetic field structure


characteristic length scale 𝜆 over which B field  lines 
reverse polarity is set by the  central engine’s rotational 
angular frequency,  𝜆 ~ 𝜋c/𝛺 ~ 107 cm


Magnetic energy is  dissipated in the flow when field  lines 
of  opposite polarity  are brought together and undergo 
reconnection.
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2 GRADUAL ENERGY DISSIPATION IN A
RELATIVISTIC SPHERICAL FLOW

2.1 Flow Dynamics

We consider a steady Poynting-flux dominated relativistic (locally)
spherical flow with a striped wind magnetic field structure (e.g.,
Lyubarsky & Kirk 2001; Bégué et al. 2017), where we follow the
treatment in Beniamini & Giannios (2017) and present the salient
points below. The characteristic length scale (�) over which the
magnetic field lines reverse polarity is set by the size of the light
cylinder (rL), such that � ⇠ ⇡rL = ⇡c/⌦ = cP/2 = 1.5⇥107

P�3 cm,
where ⌦ = 2⇡/P is the central engine’s rotational angular fre-
quency, P = 10�3

P�3 s is the spin period, and c is the speed of
light. While this description of a striped wind flow is relevant for
a millisecond magnetar central engine (e.g., Metzger et al. 2011),
more generally a magnetized outflow from an accreting black hole
arguably features stochastic flips in magnetic field polarity over
length scales � & rL (e.g., McKinney & Uzdensky 2012; Parfrey
et al. 2015). It is worth pointing out that a broadly similar scenario
may take place even without magnetic field flips or reversals, for a
time-variable Poynting-flux dominated outflow. In this case impul-
sive magnetic acceleration leads to a very similar global flow dy-
namics (Granot et al. 2011) in terms of �(r) and the fraction of the
total energy that is dissipated up to a radius r, fdis(r). While there
is no magnetic reconnection in this picture, energy dissipation is
driven by internal shocks within the outflow (Granot et al. 2011;
Granot 2012; Komissarov 2012) including multiple weak shocks at
r ⌧ rs where � � 1 that gradually become more e�cient and
become strongest and most e�cient when � . 1 is reached at
r & rs. In this scenario the e↵ective shell (rather than stripe) width
is � ⇠ ct3 where t3 = 5 ⇥ 10�4

P�3 s is the central engine’s variabil-
ity time, which is reflected in the observed variability timescales of
the prompt GRB emission (up to cosmological time dilation). The
observed variability time is typically �t3 = (1 + z)t3 ⇠ 1 s, and so
� . 1010 cm.

Magnetic energy is dissipated in the flow when field lines
of opposite polarity are brought together and undergo reconnec-
tion. The rate of reconnection is set by the inflow plasma velocity,
3in = ✏3A, which is a fraction ✏ ⇠ 0.1 of the Alfvén speed. For a
strongly magnetized flow, the initial magnetization (ratio of mag-
netic to particle energy flux ratio) at the jet launching radius r0 is
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comoving number density n

0
0. The flow is assumed to achieve mag-

netization �A = �
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0 at the Alfvén radius rA ⇠ few⇥rL (Drenkhahn

2002), at which point its proper velocity is uA = (�2
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and �A = uA/�A = (1 � ��2
A

)1/2 = 3A/c = �A/(1 + �A) ⇡ 1, and
therefore 3in = ✏c.

Under the assumption that a reasonable fraction of the dissi-
pated energy in the flow goes towards its acceleration, the condition
�(r)�(r) = �0�0 always holds a long as � � 1 (more generally
�(r)(1 + �(r)) = �0(1 + �0) from conservation of the total specific
energy, i.e. neglecting radiative losses etc., where � = B

02/4⇡w
and w is the proper enthalpy density), which eventually leads to
�(r > rs) ⇡ �1 ⇡ �0�0 = �0 = �

3/2
A

where �(r > rs) < 1 (see, e.g.,
Granot et al. 2011). At this point, the flow becomes kinetic energy
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Figure 1. Parameter space for which the photospheric radius rph, due to
baryonic electrons, is equal to the saturation radius rs, shown as a function
of �1 and (�/✏) for fixed jet power per unit solid angle L⌦ (note that the out-
flow’s total isotropic equivalent power is 4⇡L⌦ = 1.26⇥1053

L⌦,52 erg s�1).
We only consider the regime where rph < rs (to the right of the lines) when
the flow is heated continuously from the optically thick to thin regime.

dominated and starts to coast at its terminal LF �1 until it is de-
celerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the mas-
sive star progenitor of long-soft GRBs. Beyond the Alfvén radius
the outflow’s bulk LF grows as a power law in radius
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r

rs

!1/3

, rA < r < rs , (2)

until the saturation radius1,
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◆

8
cm , (3)

at which point all of the magnetic energy in the flow has been dis-
sipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks which become ef-
ficient when � < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L⌦ = LB,⌦+

Lk,⌦ + L�,⌦, where the last term represents the emitted radiation. In
the absence of any dissipation L�,⌦ = 0, and the power carried by
the Poynting flux can be expressed in terms of the total jet power,
LB,⌦ = L⌦(1��/�1) ⇡ L⌦ for rA < r ⌧ rs (where 1 < � ⌧ �1 and
� ⇡ 1), which yields an estimate of the comoving magnetic field

B
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12 �
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The comoving number density of the baryonic electrons in the flow

1 Throughout this work, the notation Qx denotes the value of the quantity
Q in units of 10x times its (cgs) units
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Figure 1. Parameter space for which the photospheric radius rph, due to
baryonic electrons, is equal to the saturation radius rs, shown as a function
of �1 and (�/✏) for fixed jet power per unit solid angle L⌦ (note that the out-
flow’s total isotropic equivalent power is 4⇡L⌦ = 1.26⇥1053

L⌦,52 erg s�1).
We only consider the regime where rph < rs (to the right of the lines) when
the flow is heated continuously from the optically thick to thin regime.

dominated and starts to coast at its terminal LF �1 until it is de-
celerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the mas-
sive star progenitor of long-soft GRBs. Beyond the Alfvén radius
the outflow’s bulk LF grows as a power law in radius
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at which point all of the magnetic energy in the flow has been dis-
sipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks which become ef-
ficient when � < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L⌦ = LB,⌦+

Lk,⌦ + L�,⌦, where the last term represents the emitted radiation. In
the absence of any dissipation L�,⌦ = 0, and the power carried by
the Poynting flux can be expressed in terms of the total jet power,
LB,⌦ = L⌦(1��/�1) ⇡ L⌦ for rA < r ⌧ rs (where 1 < � ⌧ �1 and
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2.1 Flow Dynamics

We consider a steady Poynting-flux dominated relativistic (locally)
spherical flow with a striped wind magnetic field structure (e.g.,
Lyubarsky & Kirk 2001; Bégué et al. 2017), where we follow the
treatment in Beniamini & Giannios (2017) and present the salient
points below. The characteristic length scale (�) over which the
magnetic field lines reverse polarity is set by the size of the light
cylinder (rL), such that � ⇠ ⇡rL = ⇡c/⌦ = cP/2 = 1.5⇥107

P�3 cm,
where ⌦ = 2⇡/P is the central engine’s rotational angular fre-
quency, P = 10�3

P�3 s is the spin period, and c is the speed of
light. While this description of a striped wind flow is relevant for
a millisecond magnetar central engine (e.g., Metzger et al. 2011),
more generally a magnetized outflow from an accreting black hole
arguably features stochastic flips in magnetic field polarity over
length scales � & rL (e.g., McKinney & Uzdensky 2012; Parfrey
et al. 2015). It is worth pointing out that a broadly similar scenario
may take place even without magnetic field flips or reversals, for a
time-variable Poynting-flux dominated outflow. In this case impul-
sive magnetic acceleration leads to a very similar global flow dy-
namics (Granot et al. 2011) in terms of �(r) and the fraction of the
total energy that is dissipated up to a radius r, fdis(r). While there
is no magnetic reconnection in this picture, energy dissipation is
driven by internal shocks within the outflow (Granot et al. 2011;
Granot 2012; Komissarov 2012) including multiple weak shocks at
r ⌧ rs where � � 1 that gradually become more e�cient and
become strongest and most e�cient when � . 1 is reached at
r & rs. In this scenario the e↵ective shell (rather than stripe) width
is � ⇠ ct3 where t3 = 5 ⇥ 10�4

P�3 s is the central engine’s variabil-
ity time, which is reflected in the observed variability timescales of
the prompt GRB emission (up to cosmological time dilation). The
observed variability time is typically �t3 = (1 + z)t3 ⇠ 1 s, and so
� . 1010 cm.

Magnetic energy is dissipated in the flow when field lines
of opposite polarity are brought together and undergo reconnec-
tion. The rate of reconnection is set by the inflow plasma velocity,
3in = ✏3A, which is a fraction ✏ ⇠ 0.1 of the Alfvén speed. For a
strongly magnetized flow, the initial magnetization (ratio of mag-
netic to particle energy flux ratio) at the jet launching radius r0 is
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Figure 1. Parameter space for which the photospheric radius rph, due to
baryonic electrons, is equal to the saturation radius rs, shown as a function
of �1 and (�/✏) for fixed jet power per unit solid angle L⌦ (note that the out-
flow’s total isotropic equivalent power is 4⇡L⌦ = 1.26⇥1053

L⌦,52 erg s�1).
We only consider the regime where rph < rs (to the right of the lines) when
the flow is heated continuously from the optically thick to thin regime.

dominated and starts to coast at its terminal LF �1 until it is de-
celerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the mas-
sive star progenitor of long-soft GRBs. Beyond the Alfvén radius
the outflow’s bulk LF grows as a power law in radius
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at which point all of the magnetic energy in the flow has been dis-
sipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks which become ef-
ficient when � < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L⌦ = LB,⌦+

Lk,⌦ + L�,⌦, where the last term represents the emitted radiation. In
the absence of any dissipation L�,⌦ = 0, and the power carried by
the Poynting flux can be expressed in terms of the total jet power,
LB,⌦ = L⌦(1��/�1) ⇡ L⌦ for rA < r ⌧ rs (where 1 < � ⌧ �1 and
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=

B
0
0

2

4⇡n00mpc2 � 1 . (1)

Here, LB,⌦,0 = �0c(�0B
0
0r0)2/4⇡ and Lk,⌦,0 = �0 Ṁ⌦c
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baryonic electrons, is equal to the saturation radius rs, shown as a function
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flow’s total isotropic equivalent power is 4⇡L⌦ = 1.26⇥1053

L⌦,52 erg s�1).
We only consider the regime where rph < rs (to the right of the lines) when
the flow is heated continuously from the optically thick to thin regime.

dominated and starts to coast at its terminal LF �1 until it is de-
celerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the mas-
sive star progenitor of long-soft GRBs. Beyond the Alfvén radius
the outflow’s bulk LF grows as a power law in radius
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at which point all of the magnetic energy in the flow has been dis-
sipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks which become ef-
ficient when � < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L⌦ = LB,⌦+

Lk,⌦ + L�,⌦, where the last term represents the emitted radiation. In
the absence of any dissipation L�,⌦ = 0, and the power carried by
the Poynting flux can be expressed in terms of the total jet power,
LB,⌦ = L⌦(1��/�1) ⇡ L⌦ for rA < r ⌧ rs (where 1 < � ⌧ �1 and
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dominated and starts to coast at its terminal LF �1 until it is de-
celerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the mas-
sive star progenitor of long-soft GRBs. Beyond the Alfvén radius
the outflow’s bulk LF grows as a power law in radius
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at which point all of the magnetic energy in the flow has been dis-
sipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks which become ef-
ficient when � < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L⌦ = LB,⌦+

Lk,⌦ + L�,⌦, where the last term represents the emitted radiation. In
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comoving number density n

0
0. The flow is assumed to achieve mag-

netization �A = �
2/3
0 at the Alfvén radius rA ⇠ few⇥rL (Drenkhahn

2002), at which point its proper velocity is uA = (�2
A
� 1)1/2 =

p
�A

and �A = uA/�A = (1 � ��2
A

)1/2 = 3A/c = �A/(1 + �A) ⇡ 1, and
therefore 3in = ✏c.

Under the assumption that a reasonable fraction of the dissi-
pated energy in the flow goes towards its acceleration, the condition
�(r)�(r) = �0�0 always holds a long as � � 1 (more generally
�(r)(1 + �(r)) = �0(1 + �0) from conservation of the total specific
energy, i.e. neglecting radiative losses etc., where � = B

02/4⇡w
and w is the proper enthalpy density), which eventually leads to
�(r > rs) ⇡ �1 ⇡ �0�0 = �0 = �

3/2
A

where �(r > rs) < 1 (see, e.g.,
Granot et al. 2011). At this point, the flow becomes kinetic energy

Figure 1. Parameter space for which the photospheric radius rph, due to
baryonic electrons, is equal to the saturation radius rs, shown as a function
of �1 and (�/✏) for fixed jet power per unit solid angle L⌦ (note that the out-
flow’s total isotropic equivalent power is 4⇡L⌦ = 1.26⇥1053

L⌦,52 erg s�1).
We only consider the regime where rph < rs (to the right of the lines) when
the flow is heated continuously from the optically thick to thin regime.

dominated and starts to coast at its terminal LF �1 until it is de-
celerated by its interaction with the external medium – interstellar
medium (ISM) for short-hard GRBs and stellar wind of the mas-
sive star progenitor of long-soft GRBs. Beyond the Alfvén radius
the outflow’s bulk LF grows as a power law in radius

�(r) = �1
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, rA < r < rs , (2)

until the saturation radius1,
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cm , (3)

at which point all of the magnetic energy in the flow has been dis-
sipated with nothing left for further acceleration. However, further
dissipation can still occur due to internal shocks which become ef-
ficient when � < 1 for r > rs, as argued above.

The flow is launched Poynting-flux dominated and the total
power per unit solid angle crossing radius r is given by L⌦ = LB,⌦+

Lk,⌦ + L�,⌦, where the last term represents the emitted radiation. In
the absence of any dissipation L�,⌦ = 0, and the power carried by
the Poynting flux can be expressed in terms of the total jet power,
LB,⌦ = L⌦(1��/�1) ⇡ L⌦ for rA < r ⌧ rs (where 1 < � ⌧ �1 and
� ⇡ 1), which yields an estimate of the comoving magnetic field

B
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The comoving number density of the baryonic electrons in the flow

1 Throughout this work, the notation Qx denotes the value of the quantity
Q in units of 10x times its (cgs) units
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energy  is dissipated gradually in the flow as magnetic field lines of opposite polarity come into  contact and undergo 
magnetic reconnection


The  rate  of energy dissipation:


Half of the dissipated energy goes directly into the flow’s kinetic energy, while the other half goes towards 
particle acceleration. It is divided between  electrons (𝜖e Ediss/2) and protons ((1 - 𝜖e ) Ediss/2), where most of the 
latter energy is also  typically quickly converted into kinetic  energy.  Acceleration of electrons (Beniamini & Giannios 
2017):


+ only a fraction 𝜁 < 1 of electrons is  accelerated during magnetic  reconnection, and the remaining  
fraction (1- 𝜁) forms a thermal  distribution 
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is given by n
0 = L⌦/r2��1mpc

3 / (r2�)�1, which contributes a
characteristic Thomson optical depth of
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where �T is the Thomson cross-section. For r < rs, � / r
1/3 and

therefore ⌧T / r
�5/3. However, when the flow starts to coast at � =

�1 the Thomson optical depth drops more slowly with radius, ⌧T /
r
�1. At ⌧T = 1 matter and radiation decouple, allowing the radiation

to stream freely, which defines the photospheric radius,

rph ⇡ 1012
L
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⌦,52
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8
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Here we have only considered the Thomson optical depth of bary-
onic electrons. In Fig. 1, we show the di↵erent parameters for
which rph = rs. The vertical axis shows the typical range expected
for

⇣
�
✏

⌘
8
, where the lower end is relevant for a millisecond mag-

netar central engine and the higher end reflects the typical values
based on the observed variability timescale of prompt GRB emis-
sion. The solid lines show the model parameter space for fixed val-
ues of the jet power per unit solid angle, L⌦ . 1052 erg s�1sr�1, the
fiducial value adopted in this work. We consider the regime with
rph < rs when the flow is heated continuously as it transitions from
the optically thick to thin regimes. We will show below that copious
pair-production ensues when energy dissipation leads to particle ac-
celeration into a power-law energy distribution that emits energetic
synchrotron radiation. The created pairs extend the photospheric
radius by factors of a few.

2.2 Energy Dissipation & Particle Acceleration

Energy is dissipated gradually in the flow, for r < rs, as magnetic
field lines of opposite polarity come into contact and undergo mag-
netic reconnection. The rate of energy dissipation at any given ra-
dius can be obtained from the Poynting-flux power, such that (Gi-
annios & Spruit 2005)
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This implies a di↵erential dissipation dLdiss,⌦ / r
�2/3

dr or a cu-
mulative dissipation Ldiss,⌦(< r) / r

1/3 at r0 < r < rs. At r = rs,
when � = �1, magnetic energy dissipation peaks and stops, so
that fdis(r) = Ldiss,⌦(< r)/L⌦ = min[1, (r/rs)1/3]. Next, we relate
the dissipated power to the comoving dissipated energy density,
dLdiss,⌦ = r

2�2
c dU

0
diss, and express dr = ��cdt

0 ⇡ �cdt
0 for � � 1

and � ⇡ 1, which yields
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dt0
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Magnetic reconnection leads to the acceleration of electrons into a
non-thermal power-law energy distribution, with dn

0 / ��p

e d�e for
�m < �e < �M , for which the mean energy per unit rest mass is
h�einth = [(p � 1)/(p � 2)]�m when p > 2. The power-law index p

has been shown to depend sensitively on the value of � (e.g., Sironi
& Spitkovsky 2014; Guo et al. 2015; Kagan et al. 2015; Werner
et al. 2016), where it can be approximated to follow the scaling
(Beniamini & Giannios 2017)

p = 4��0.3 . (9)

In models featuring internal shocks, 2 . p . 3 is left to vary as
one of the model parameters, whereas the � dependence of p, as

employed here, reduces the total number of model parameter by
one.

It is assumed here for simplicity that half of the dissipated
energy E

0
diss goes directly into the flow’s kinetic energy (see, e.g.,

Drenkhahn & Spruit 2002), while the other half goes towards par-
ticle acceleration and is divided between electrons (✏eE

0
diss/2) and

protons ((1 � ✏e)E0diss/2), where most of the latter energy is also
typically quickly converted into kinetic energy. In scenario (i) we
further assume that only a fraction ⇠ < 1 of electrons are actually
accelerated during magnetic reconnection, and the remaining frac-
tion (1�⇠) form a thermal distribution. The mean energy per baryon
is limited to�mpc

2, as this is the total dissipated energy per baryon-
electron for complete magnetic dissipation, however some particle
may in principle exceed the mean energy. Therefore, the mean en-
ergy per accelerated electron, for a total of Ne electrons, is given
as ⇠h�eimec

2 = (✏e/2)E0diss/Ne = ✏e�mpc
2/2, which yields an esti-

mate of the mean energy per rest mass energy of the non-thermal
electrons (Beniamini & Giannios 2017)
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For a given set of flow parameters, the ratio of the parameters ✏e and
⇠ controls the mean energy of the power-law accelerated electrons.
Since ✏e also controls the amount of energy put into the power-
law electrons, it also sets the normalization of the non-thermal syn-
chrotron emission component with respect to thermal component.

2.3 Thermal Radiation

The magnetic energy in the flow is dissipated over a range of radii
(r0 < r < rs) and as the flow expands to larger radii its Thomson
optical depth drops. Therefore, for a given set of model parameters
it is possible that energy dissipation proceeds continuously from
the optically thick to thin regions. Where most of the energy is dis-
sipated has consequences for the emergent radiation field spectrum.
If most of the dissipation occurs at smaller radii, when the flow is
optically thick (⌧T � 1), Compton interactions between the elec-
trons (or pairs) and the radiation field ensure that the flow maintains
(quasi-)thermal equilibrium. In this case, the flow expands adiabat-
ically and since it is radiation-dominated, the scaling of comov-
ing energy density with comoving volume follows U

0
th / V

0�4/3.
The energy density of the thermal radiation field can be related
to its comoving temperature, U

0
th = (4�SB/c)T 04th , where �SB is

the Stefan-Boltzmann constant, which yields T
0
th / V

0�1/3. For a
steady relativistic spherical flow expanding radially, the continuity
equation yields, r

2�(r)n03 = constant, so that V
0 / r

2�(r). This fi-
nally implies that T

0
th(r) / r

�7/9 when � / r
1/3. The scaling of the

thermal luminosity with radius can now be expressed as Lth,⌦ =

(4/3)r2�2
cU
0
th / r

�4/9. If an amount dLdiss,⌦ of power is dissipated
at radius rdiss, then the thermal luminosity surviving till any radius
r > rdiss is given by dLth,⌦(r) = (1/2)dLdiss,⌦(rdiss)(r/rdiss)�4/9, such
that the integrated thermal luminosity is,

R
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r < rs, and its value at the photosphere is
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is given by n
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characteristic Thomson optical depth of
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where �T is the Thomson cross-section. For r < rs, � / r
1/3 and

therefore ⌧T / r
�5/3. However, when the flow starts to coast at � =

�1 the Thomson optical depth drops more slowly with radius, ⌧T /
r
�1. At ⌧T = 1 matter and radiation decouple, allowing the radiation

to stream freely, which defines the photospheric radius,

rph ⇡ 1012
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Here we have only considered the Thomson optical depth of bary-
onic electrons. In Fig. 1, we show the di↵erent parameters for
which rph = rs. The vertical axis shows the typical range expected
for

⇣
�
✏

⌘
8
, where the lower end is relevant for a millisecond mag-

netar central engine and the higher end reflects the typical values
based on the observed variability timescale of prompt GRB emis-
sion. The solid lines show the model parameter space for fixed val-
ues of the jet power per unit solid angle, L⌦ . 1052 erg s�1sr�1, the
fiducial value adopted in this work. We consider the regime with
rph < rs when the flow is heated continuously as it transitions from
the optically thick to thin regimes. We will show below that copious
pair-production ensues when energy dissipation leads to particle ac-
celeration into a power-law energy distribution that emits energetic
synchrotron radiation. The created pairs extend the photospheric
radius by factors of a few.

2.2 Energy Dissipation & Particle Acceleration

Energy is dissipated gradually in the flow, for r < rs, as magnetic
field lines of opposite polarity come into contact and undergo mag-
netic reconnection. The rate of energy dissipation at any given ra-
dius can be obtained from the Poynting-flux power, such that (Gi-
annios & Spruit 2005)
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This implies a di↵erential dissipation dLdiss,⌦ / r
�2/3

dr or a cu-
mulative dissipation Ldiss,⌦(< r) / r

1/3 at r0 < r < rs. At r = rs,
when � = �1, magnetic energy dissipation peaks and stops, so
that fdis(r) = Ldiss,⌦(< r)/L⌦ = min[1, (r/rs)1/3]. Next, we relate
the dissipated power to the comoving dissipated energy density,
dLdiss,⌦ = r
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Magnetic reconnection leads to the acceleration of electrons into a
non-thermal power-law energy distribution, with dn

0 / ��p

e d�e for
�m < �e < �M , for which the mean energy per unit rest mass is
h�einth = [(p � 1)/(p � 2)]�m when p > 2. The power-law index p

has been shown to depend sensitively on the value of � (e.g., Sironi
& Spitkovsky 2014; Guo et al. 2015; Kagan et al. 2015; Werner
et al. 2016), where it can be approximated to follow the scaling
(Beniamini & Giannios 2017)

p = 4��0.3 . (9)

In models featuring internal shocks, 2 . p . 3 is left to vary as
one of the model parameters, whereas the � dependence of p, as

employed here, reduces the total number of model parameter by
one.

It is assumed here for simplicity that half of the dissipated
energy E

0
diss goes directly into the flow’s kinetic energy (see, e.g.,

Drenkhahn & Spruit 2002), while the other half goes towards par-
ticle acceleration and is divided between electrons (✏eE

0
diss/2) and

protons ((1 � ✏e)E0diss/2), where most of the latter energy is also
typically quickly converted into kinetic energy. In scenario (i) we
further assume that only a fraction ⇠ < 1 of electrons are actually
accelerated during magnetic reconnection, and the remaining frac-
tion (1�⇠) form a thermal distribution. The mean energy per baryon
is limited to�mpc

2, as this is the total dissipated energy per baryon-
electron for complete magnetic dissipation, however some particle
may in principle exceed the mean energy. Therefore, the mean en-
ergy per accelerated electron, for a total of Ne electrons, is given
as ⇠h�eimec

2 = (✏e/2)E0diss/Ne = ✏e�mpc
2/2, which yields an esti-

mate of the mean energy per rest mass energy of the non-thermal
electrons (Beniamini & Giannios 2017)
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For a given set of flow parameters, the ratio of the parameters ✏e and
⇠ controls the mean energy of the power-law accelerated electrons.
Since ✏e also controls the amount of energy put into the power-
law electrons, it also sets the normalization of the non-thermal syn-
chrotron emission component with respect to thermal component.

2.3 Thermal Radiation

The magnetic energy in the flow is dissipated over a range of radii
(r0 < r < rs) and as the flow expands to larger radii its Thomson
optical depth drops. Therefore, for a given set of model parameters
it is possible that energy dissipation proceeds continuously from
the optically thick to thin regions. Where most of the energy is dis-
sipated has consequences for the emergent radiation field spectrum.
If most of the dissipation occurs at smaller radii, when the flow is
optically thick (⌧T � 1), Compton interactions between the elec-
trons (or pairs) and the radiation field ensure that the flow maintains
(quasi-)thermal equilibrium. In this case, the flow expands adiabat-
ically and since it is radiation-dominated, the scaling of comov-
ing energy density with comoving volume follows U

0
th / V

0�4/3.
The energy density of the thermal radiation field can be related
to its comoving temperature, U

0
th = (4�SB/c)T 04th , where �SB is

the Stefan-Boltzmann constant, which yields T
0
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0�1/3. For a
steady relativistic spherical flow expanding radially, the continuity
equation yields, r

2�(r)n03 = constant, so that V
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�4/9. If an amount dLdiss,⌦ of power is dissipated
at radius rdiss, then the thermal luminosity surviving till any radius
r > rdiss is given by dLth,⌦(r) = (1/2)dLdiss,⌦(rdiss)(r/rdiss)�4/9, such
that the integrated thermal luminosity is,
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where �T is the Thomson cross-section. For r < rs, � / r
1/3 and

therefore ⌧T / r
�5/3. However, when the flow starts to coast at � =

�1 the Thomson optical depth drops more slowly with radius, ⌧T /
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�1. At ⌧T = 1 matter and radiation decouple, allowing the radiation

to stream freely, which defines the photospheric radius,
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Here we have only considered the Thomson optical depth of bary-
onic electrons. In Fig. 1, we show the di↵erent parameters for
which rph = rs. The vertical axis shows the typical range expected
for
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, where the lower end is relevant for a millisecond mag-

netar central engine and the higher end reflects the typical values
based on the observed variability timescale of prompt GRB emis-
sion. The solid lines show the model parameter space for fixed val-
ues of the jet power per unit solid angle, L⌦ . 1052 erg s�1sr�1, the
fiducial value adopted in this work. We consider the regime with
rph < rs when the flow is heated continuously as it transitions from
the optically thick to thin regimes. We will show below that copious
pair-production ensues when energy dissipation leads to particle ac-
celeration into a power-law energy distribution that emits energetic
synchrotron radiation. The created pairs extend the photospheric
radius by factors of a few.

2.2 Energy Dissipation & Particle Acceleration

Energy is dissipated gradually in the flow, for r < rs, as magnetic
field lines of opposite polarity come into contact and undergo mag-
netic reconnection. The rate of energy dissipation at any given ra-
dius can be obtained from the Poynting-flux power, such that (Gi-
annios & Spruit 2005)
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This implies a di↵erential dissipation dLdiss,⌦ / r
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dr or a cu-
mulative dissipation Ldiss,⌦(< r) / r

1/3 at r0 < r < rs. At r = rs,
when � = �1, magnetic energy dissipation peaks and stops, so
that fdis(r) = Ldiss,⌦(< r)/L⌦ = min[1, (r/rs)1/3]. Next, we relate
the dissipated power to the comoving dissipated energy density,
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Magnetic reconnection leads to the acceleration of electrons into a
non-thermal power-law energy distribution, with dn

0 / ��p

e d�e for
�m < �e < �M , for which the mean energy per unit rest mass is
h�einth = [(p � 1)/(p � 2)]�m when p > 2. The power-law index p

has been shown to depend sensitively on the value of � (e.g., Sironi
& Spitkovsky 2014; Guo et al. 2015; Kagan et al. 2015; Werner
et al. 2016), where it can be approximated to follow the scaling
(Beniamini & Giannios 2017)

p = 4��0.3 . (9)

In models featuring internal shocks, 2 . p . 3 is left to vary as
one of the model parameters, whereas the � dependence of p, as

employed here, reduces the total number of model parameter by
one.

It is assumed here for simplicity that half of the dissipated
energy E
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diss goes directly into the flow’s kinetic energy (see, e.g.,

Drenkhahn & Spruit 2002), while the other half goes towards par-
ticle acceleration and is divided between electrons (✏eE

0
diss/2) and

protons ((1 � ✏e)E0diss/2), where most of the latter energy is also
typically quickly converted into kinetic energy. In scenario (i) we
further assume that only a fraction ⇠ < 1 of electrons are actually
accelerated during magnetic reconnection, and the remaining frac-
tion (1�⇠) form a thermal distribution. The mean energy per baryon
is limited to�mpc

2, as this is the total dissipated energy per baryon-
electron for complete magnetic dissipation, however some particle
may in principle exceed the mean energy. Therefore, the mean en-
ergy per accelerated electron, for a total of Ne electrons, is given
as ⇠h�eimec

2 = (✏e/2)E0diss/Ne = ✏e�mpc
2/2, which yields an esti-

mate of the mean energy per rest mass energy of the non-thermal
electrons (Beniamini & Giannios 2017)
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For a given set of flow parameters, the ratio of the parameters ✏e and
⇠ controls the mean energy of the power-law accelerated electrons.
Since ✏e also controls the amount of energy put into the power-
law electrons, it also sets the normalization of the non-thermal syn-
chrotron emission component with respect to thermal component.

2.3 Thermal Radiation

The magnetic energy in the flow is dissipated over a range of radii
(r0 < r < rs) and as the flow expands to larger radii its Thomson
optical depth drops. Therefore, for a given set of model parameters
it is possible that energy dissipation proceeds continuously from
the optically thick to thin regions. Where most of the energy is dis-
sipated has consequences for the emergent radiation field spectrum.
If most of the dissipation occurs at smaller radii, when the flow is
optically thick (⌧T � 1), Compton interactions between the elec-
trons (or pairs) and the radiation field ensure that the flow maintains
(quasi-)thermal equilibrium. In this case, the flow expands adiabat-
ically and since it is radiation-dominated, the scaling of comov-
ing energy density with comoving volume follows U
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The energy density of the thermal radiation field can be related
to its comoving temperature, U
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th = (4�SB/c)T 04th , where �SB is

the Stefan-Boltzmann constant, which yields T
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is given by n
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where �T is the Thomson cross-section. For r < rs, � / r
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Here we have only considered the Thomson optical depth of bary-
onic electrons. In Fig. 1, we show the di↵erent parameters for
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Magnetic reconnection leads to the acceleration of electrons into a
non-thermal power-law energy distribution, with dn
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(Beniamini & Giannios 2017)
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For a given set of flow parameters, the ratio of the parameters ✏e and
⇠ controls the mean energy of the power-law accelerated electrons.
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The magnetic energy in the flow is dissipated over a range of radii
(r0 < r < rs) and as the flow expands to larger radii its Thomson
optical depth drops. Therefore, for a given set of model parameters
it is possible that energy dissipation proceeds continuously from
the optically thick to thin regions. Where most of the energy is dis-
sipated has consequences for the emergent radiation field spectrum.
If most of the dissipation occurs at smaller radii, when the flow is
optically thick (⌧T � 1), Compton interactions between the elec-
trons (or pairs) and the radiation field ensure that the flow maintains
(quasi-)thermal equilibrium. In this case, the flow expands adiabat-
ically and since it is radiation-dominated, the scaling of comov-
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and the corresponding observed energy of the Wien peak is
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where kB is the Boltzmann constant. The above peak energy es-
timate corresponds to that for the spectral luminosity LE . The
ELE Wien spectrum peak energy occurs at 4�kBT

0
th/(1 + z) in-

stead. Since T
0
th(r) / r

�7/12, the peak energy scaling with radius
is Eth,pk / r

�1/4 / ⌧3/20
T0 . In deriving the estimates above, we have

made the assumption that deeper in the flow, at very large optical
depths, the energy imparted to particles is readily thermalized and
the e�ciency of thermalization is high.

Several works have studied the importance of the various ra-
diative processes that shape the (quasi-)thermal spectrum at dif-
ferent optical depths (e.g., Beloborodov 2013; Vurm et al. 2013;
Thompson & Gill 2014; Bégué & Pe’er 2015; Vurm & Be-
loborodov 2016) and its radiative e�ciency in a Poynting flux
dominated flow (Pe’er 2017). The radiation field is able to main-
tain a blackbody spectrum only at extremely high optical depths
(⌧T � 102), where softer seed photons are provided by double
Compton scattering and/or bremmstrahlung (in a weakly magne-
tized flow, � ⌧ 1) or cyclo-synchrotron emission (in a strongly
magnetized flow, � > 1). At larger radii, the e�ciency of com-
pletely thermalizing the flow drops and a Wien spectrum emerges
instead at ⌧T & 102. Further dissipation at lower optical depths,
but still below the photosphere, acts to broaden the Wien spectrum,
producing a softer spectral slope below the spectral peak energy
and a harder one above it.

3 NUMERICAL TREATMENT

We model the emission region using a one-zone kinetic code (see
Gill & Thompson 2014, for code details), where we include all
relevant high-energy radiation processes in a relativistic photon-
e
±-pair plasma, including Compton scattering, cyclo-synchtrotron

emission and self-absorption, pair production and annihilation, and
Coulomb interactions among the pairs.

The escape of radiation from an optically thin (⌧T < 1) re-
gion of comoving causal size r/�(r) is implemented using a sim-
ple ‘leaky-box’ geometrical prescription (see, e.g., Lightman &
Zdziarski 1987). When the flow is optically thick (⌧T > 1), radi-
ation is assumed to remain within the dissipation region with no
leakage. To obtain the steady-state spectrum in the observer frame,
we integrate over the comoving spectral emissivity (see, e.g., Gra-
not et al. 1999) from the photospheric radius, rph(✓̃), which depends
on the polar angle ✓̃ measured from the line-of-sight (Abramow-
icz et al. 1991; Pe’er 2008; Beloborodov 2011), to a large radius
� max(rs, rph) where ⌧T ⌧ 1 and the emission and absorption be-
come negligible.

Since we employ a one-zone code, which lacks any spatial and
angular information of the flow and the radiation field, the emis-
sion is approximated to arise from essentially a blob of comoving
causal size r/� that is radially localized at r and moving with bulk
LF �(r). In addition, the leaky-box prescription is not particularly
well suited to describe the optically thin parts of the flow when
radiation is expected to stream freely. Instead, under the current

prescription radiation leaks out over a (comoving) dynamical time,
t
0
dyn = r/�c, at the rate of dn

0
�/dt

0 = �n
0
�/t
0
dyn where n

0
� is the comov-

ing number density of photons. Then, for a coasting flow, for which
t
0 / r, this would mean that the remaining photon number density,

n
0
�(r) = n

0
�,0(r0/r), is still half at r = r0 + �r = 2r0 of that emitted

a dynamical time (radius doubling time) ago at r = r0. As a result,
the radiation field accumulates in the emission region over multi-
ple dynamical times, which is unphysical and may produce some
artefacts. For example, this would cause a larger suppression of the
high-energy part of the spectrum due to ��-annihilation for which
a test photon with energy E > �mec

2/(1 + z) ‘sees’ a larger optical
depth ⌧�� due to larger number density of annihilating low-energy
target photons at energy ⇠ (�mec

2)2/E(1+z)2. This also leads to the
emergence of a power-law spectral break at high-energies instead
of an exponential one (e.g., Granot et al. 2008). Therefore, a more
accurate radiation transfer treatment, which is outside the scope of
this work, is needed to avoid such artefacts and include the angular
dependence of the radiation field (see, e.g., Vurm & Beloborodov
2016).

4 TWO DIFFERENT PARTICLE HEATING SCENARIOS

Magnetic energy dissipation due to either magnetic reconnection
or MHD instabilities commences when the flow is highly optically
thick. It continues to inject energy in the form of either power-law
(baryonic) electrons or via distributed heating of all particles, re-
spectively. The details of how particle injection/heating is imple-
mented in the simulation are presented in Appendix (A).

Our starting point is an optically thick flow with initial Thom-
son optical depth ⌧T0 = 100. At this point, the comoving radiation
field spectrum resembles a Wien-like thermal spectrum,

dn
0
�

d ln E0
=

U
0
0

6(kBTth)4 E
03 exp

 
� E

0

kBT
0
th

!
(14)

characterized by its temperature T
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th from Eq. (12) and normaliza-
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in Eq. (11) for r < rs.

4.1 Injection of Power-Law Electrons

Power law electrons injected with �e > �m = [(p�2)/(p�1)]h�einth,
where the last equality is valid for p > 2 which is obtained for
� < 10, emit synchrotron radiation for which the peak of the ⌫F⌫ or
ELE synchrotron spectrum occurs at the characteristic energy (with
p = 4 when � = 1 at r = rs according to our parameterization in
Eq. (9))
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where kB is the Boltzmann constant. The above peak energy es-
timate corresponds to that for the spectral luminosity LE . The
ELE Wien spectrum peak energy occurs at 4�kBT
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made the assumption that deeper in the flow, at very large optical
depths, the energy imparted to particles is readily thermalized and
the e�ciency of thermalization is high.

Several works have studied the importance of the various ra-
diative processes that shape the (quasi-)thermal spectrum at dif-
ferent optical depths (e.g., Beloborodov 2013; Vurm et al. 2013;
Thompson & Gill 2014; Bégué & Pe’er 2015; Vurm & Be-
loborodov 2016) and its radiative e�ciency in a Poynting flux
dominated flow (Pe’er 2017). The radiation field is able to main-
tain a blackbody spectrum only at extremely high optical depths
(⌧T � 102), where softer seed photons are provided by double
Compton scattering and/or bremmstrahlung (in a weakly magne-
tized flow, � ⌧ 1) or cyclo-synchrotron emission (in a strongly
magnetized flow, � > 1). At larger radii, the e�ciency of com-
pletely thermalizing the flow drops and a Wien spectrum emerges
instead at ⌧T & 102. Further dissipation at lower optical depths,
but still below the photosphere, acts to broaden the Wien spectrum,
producing a softer spectral slope below the spectral peak energy
and a harder one above it.

3 NUMERICAL TREATMENT

We model the emission region using a one-zone kinetic code (see
Gill & Thompson 2014, for code details), where we include all
relevant high-energy radiation processes in a relativistic photon-
e
±-pair plasma, including Compton scattering, cyclo-synchtrotron

emission and self-absorption, pair production and annihilation, and
Coulomb interactions among the pairs.

The escape of radiation from an optically thin (⌧T < 1) re-
gion of comoving causal size r/�(r) is implemented using a sim-
ple ‘leaky-box’ geometrical prescription (see, e.g., Lightman &
Zdziarski 1987). When the flow is optically thick (⌧T > 1), radi-
ation is assumed to remain within the dissipation region with no
leakage. To obtain the steady-state spectrum in the observer frame,
we integrate over the comoving spectral emissivity (see, e.g., Gra-
not et al. 1999) from the photospheric radius, rph(✓̃), which depends
on the polar angle ✓̃ measured from the line-of-sight (Abramow-
icz et al. 1991; Pe’er 2008; Beloborodov 2011), to a large radius
� max(rs, rph) where ⌧T ⌧ 1 and the emission and absorption be-
come negligible.

Since we employ a one-zone code, which lacks any spatial and
angular information of the flow and the radiation field, the emis-
sion is approximated to arise from essentially a blob of comoving
causal size r/� that is radially localized at r and moving with bulk
LF �(r). In addition, the leaky-box prescription is not particularly
well suited to describe the optically thin parts of the flow when
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Magnetic energy dissipation due to either magnetic reconnection
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thick. It continues to inject energy in the form of either power-law
(baryonic) electrons or via distributed heating of all particles, re-
spectively. The details of how particle injection/heating is imple-
mented in the simulation are presented in Appendix (A).

Our starting point is an optically thick flow with initial Thom-
son optical depth ⌧T0 = 100. At this point, the comoving radiation
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where kB is the Boltzmann constant. The above peak energy es-
timate corresponds to that for the spectral luminosity LE . The
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depths, the energy imparted to particles is readily thermalized and
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Several works have studied the importance of the various ra-
diative processes that shape the (quasi-)thermal spectrum at dif-
ferent optical depths (e.g., Beloborodov 2013; Vurm et al. 2013;
Thompson & Gill 2014; Bégué & Pe’er 2015; Vurm & Be-
loborodov 2016) and its radiative e�ciency in a Poynting flux
dominated flow (Pe’er 2017). The radiation field is able to main-
tain a blackbody spectrum only at extremely high optical depths
(⌧T � 102), where softer seed photons are provided by double
Compton scattering and/or bremmstrahlung (in a weakly magne-
tized flow, � ⌧ 1) or cyclo-synchrotron emission (in a strongly
magnetized flow, � > 1). At larger radii, the e�ciency of com-
pletely thermalizing the flow drops and a Wien spectrum emerges
instead at ⌧T & 102. Further dissipation at lower optical depths,
but still below the photosphere, acts to broaden the Wien spectrum,
producing a softer spectral slope below the spectral peak energy
and a harder one above it.

3 NUMERICAL TREATMENT

We model the emission region using a one-zone kinetic code (see
Gill & Thompson 2014, for code details), where we include all
relevant high-energy radiation processes in a relativistic photon-
e
±-pair plasma, including Compton scattering, cyclo-synchtrotron

emission and self-absorption, pair production and annihilation, and
Coulomb interactions among the pairs.

The escape of radiation from an optically thin (⌧T < 1) re-
gion of comoving causal size r/�(r) is implemented using a sim-
ple ‘leaky-box’ geometrical prescription (see, e.g., Lightman &
Zdziarski 1987). When the flow is optically thick (⌧T > 1), radi-
ation is assumed to remain within the dissipation region with no
leakage. To obtain the steady-state spectrum in the observer frame,
we integrate over the comoving spectral emissivity (see, e.g., Gra-
not et al. 1999) from the photospheric radius, rph(✓̃), which depends
on the polar angle ✓̃ measured from the line-of-sight (Abramow-
icz et al. 1991; Pe’er 2008; Beloborodov 2011), to a large radius
� max(rs, rph) where ⌧T ⌧ 1 and the emission and absorption be-
come negligible.

Since we employ a one-zone code, which lacks any spatial and
angular information of the flow and the radiation field, the emis-
sion is approximated to arise from essentially a blob of comoving
causal size r/� that is radially localized at r and moving with bulk
LF �(r). In addition, the leaky-box prescription is not particularly
well suited to describe the optically thin parts of the flow when
radiation is expected to stream freely. Instead, under the current

prescription radiation leaks out over a (comoving) dynamical time,
t
0
dyn = r/�c, at the rate of dn

0
�/dt

0 = �n
0
�/t
0
dyn where n

0
� is the comov-

ing number density of photons. Then, for a coasting flow, for which
t
0 / r, this would mean that the remaining photon number density,
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0
�(r) = n

0
�,0(r0/r), is still half at r = r0 + �r = 2r0 of that emitted

a dynamical time (radius doubling time) ago at r = r0. As a result,
the radiation field accumulates in the emission region over multi-
ple dynamical times, which is unphysical and may produce some
artefacts. For example, this would cause a larger suppression of the
high-energy part of the spectrum due to ��-annihilation for which
a test photon with energy E > �mec

2/(1 + z) ‘sees’ a larger optical
depth ⌧�� due to larger number density of annihilating low-energy
target photons at energy ⇠ (�mec

2)2/E(1+z)2. This also leads to the
emergence of a power-law spectral break at high-energies instead
of an exponential one (e.g., Granot et al. 2008). Therefore, a more
accurate radiation transfer treatment, which is outside the scope of
this work, is needed to avoid such artefacts and include the angular
dependence of the radiation field (see, e.g., Vurm & Beloborodov
2016).

4 TWO DIFFERENT PARTICLE HEATING SCENARIOS

Magnetic energy dissipation due to either magnetic reconnection
or MHD instabilities commences when the flow is highly optically
thick. It continues to inject energy in the form of either power-law
(baryonic) electrons or via distributed heating of all particles, re-
spectively. The details of how particle injection/heating is imple-
mented in the simulation are presented in Appendix (A).

Our starting point is an optically thick flow with initial Thom-
son optical depth ⌧T0 = 100. At this point, the comoving radiation
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thick. It continues to inject energy in the form of either power-law
(baryonic) electrons or via distributed heating of all particles, re-
spectively. The details of how particle injection/heating is imple-
mented in the simulation are presented in Appendix (A).
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Figure 2. Top-Left: Observed steady-state spectrum with injection of power-law electrons commencing at ⌧T0 = 100. The final spectrum is obtained when
the flow becomes optically thin with ⌧T ⌧ 1. The black dashed line shows the synchrotron emission from power-law electrons (without the e↵ects of ��-
annihilation at the highest energies). Top-Right: Spectral slopes where the photon index ↵ = �2 + d log(ELE)/d log E. Bottom-Left: Electron and positron
momentum distributions at r = rs shown using the optical depth. Bottom-Right: Radial evolution of the bulk LF �, total optical depth of ⌧T = ⌧T,e + ⌧T,±
including that due to produced e

±-pairs (⌧T,±), optical depth of baryonic electrons only (⌧T,e) if no pairs were produced, and Compton-y parameter of pairs
(yC). Magnetic energy dissipation and acceleration of the flow halts at the saturation radius r = rs, beyond which the flow coasts at constant � = �1. The
photospheric radius due to baryonic electrons (⌧T,e = 1) is extended due to production of e

±-pairs (⌧T = 1).

and h = 2⇡~ is the Planck’s constant. Another characteristic break
in the synchrotron spectrum appears when the emission becomes
self-absorbed by the emitting electrons. A simple estimate of the
self-absorption break energy can be obtained by noticing that at
E = Esa the synchrotron specific intensity cannot exceed that
of a blackbody. We approximate the latter using the Rayleigh-
Jeans specific intensity, I
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This estimate is only valid when Ec < Esa < Em. In addition, it
only accounts for the number of baryonic electrons and not the total
number of particles that includes the e

±-pairs, and therefore, the
true value is slightly higher by a factor (⌧T /⌧T,e)1/3, where ⌧T =

⌧T,e + ⌧T± is the total optical depth and ⌧T,e is the optical depth due
to baryonic electrons.

At E < Esa a photon index of ↵ = 1 is usually assumed. This
indeed holds for a uniform emission region, as is assumed in this
work, and is physically expected in our scenario (ii) for volumetric
heating. However, when the particles are heated at a moving front,
be it a shock or magnetic reconnection front as may be relevant in
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Figure 2. Top-Left: Observed steady-state spectrum with injection of power-law electrons commencing at ⌧T0 = 100. The final spectrum is obtained when
the flow becomes optically thin with ⌧T ⌧ 1. The black dashed line shows the synchrotron emission from power-law electrons (without the e↵ects of ��-
annihilation at the highest energies). Top-Right: Spectral slopes where the photon index ↵ = �2 + d log(ELE)/d log E. Bottom-Left: Electron and positron
momentum distributions at r = rs shown using the optical depth. Bottom-Right: Radial evolution of the bulk LF �, total optical depth of ⌧T = ⌧T,e + ⌧T,±
including that due to produced e

±-pairs (⌧T,±), optical depth of baryonic electrons only (⌧T,e) if no pairs were produced, and Compton-y parameter of pairs
(yC). Magnetic energy dissipation and acceleration of the flow halts at the saturation radius r = rs, beyond which the flow coasts at constant � = �1. The
photospheric radius due to baryonic electrons (⌧T,e = 1) is extended due to production of e

±-pairs (⌧T = 1).

and h = 2⇡~ is the Planck’s constant. Another characteristic break
in the synchrotron spectrum appears when the emission becomes
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This estimate is only valid when Ec < Esa < Em. In addition, it
only accounts for the number of baryonic electrons and not the total
number of particles that includes the e

±-pairs, and therefore, the
true value is slightly higher by a factor (⌧T /⌧T,e)1/3, where ⌧T =

⌧T,e + ⌧T± is the total optical depth and ⌧T,e is the optical depth due
to baryonic electrons.

At E < Esa a photon index of ↵ = 1 is usually assumed. This
indeed holds for a uniform emission region, as is assumed in this
work, and is physically expected in our scenario (ii) for volumetric
heating. However, when the particles are heated at a moving front,
be it a shock or magnetic reconnection front as may be relevant in
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Figure 2. Top-Left: Observed steady-state spectrum with injection of power-law electrons commencing at ⌧T0 = 100. The final spectrum is obtained when
the flow becomes optically thin with ⌧T ⌧ 1. The black dashed line shows the synchrotron emission from power-law electrons (without the e↵ects of ��-
annihilation at the highest energies). Top-Right: Spectral slopes where the photon index ↵ = �2 + d log(ELE)/d log E. Bottom-Left: Electron and positron
momentum distributions at r = rs shown using the optical depth. Bottom-Right: Radial evolution of the bulk LF �, total optical depth of ⌧T = ⌧T,e + ⌧T,±
including that due to produced e

±-pairs (⌧T,±), optical depth of baryonic electrons only (⌧T,e) if no pairs were produced, and Compton-y parameter of pairs
(yC). Magnetic energy dissipation and acceleration of the flow halts at the saturation radius r = rs, beyond which the flow coasts at constant � = �1. The
photospheric radius due to baryonic electrons (⌧T,e = 1) is extended due to production of e

±-pairs (⌧T = 1).

and h = 2⇡~ is the Planck’s constant. Another characteristic break
in the synchrotron spectrum appears when the emission becomes
self-absorbed by the emitting electrons. A simple estimate of the
self-absorption break energy can be obtained by noticing that at
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This estimate is only valid when Ec < Esa < Em. In addition, it
only accounts for the number of baryonic electrons and not the total
number of particles that includes the e

±-pairs, and therefore, the
true value is slightly higher by a factor (⌧T /⌧T,e)1/3, where ⌧T =

⌧T,e + ⌧T± is the total optical depth and ⌧T,e is the optical depth due
to baryonic electrons.

At E < Esa a photon index of ↵ = 1 is usually assumed. This
indeed holds for a uniform emission region, as is assumed in this
work, and is physically expected in our scenario (ii) for volumetric
heating. However, when the particles are heated at a moving front,
be it a shock or magnetic reconnection front as may be relevant in
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nated by the baryonic electrons as shown in the bottom-right panel
of Fig. 2. When ✏e is increased, more energy is put into the non-
thermal component that results in increasing the number of pro-
duced e

±-pairs, as evident for the ✏e = 0.2 case. Due to pair produc-
tion the photospheric radius is extended to slightly larger radii by a
factor (1 + ⌧T,±/⌧T,e)3/5 over the baryonic one given in Eq. (6). For
example, ⌧T,± ⇡ ⌧T,e for ✏e = 0.2 which yields an enhancement in
the photospheric radius by a factor ⇠ 23/5 ⇡ 1.52. This is demon-
strated in the figure where the dotted black line shows the radial
evolution of the optical depth in the absence of pair-production and
the solid lines show the total optical depth including e

±-pairs. Af-
ter a surge in ⌧T due to the produced pairs, the solid lines display
similar radial evolution as compared to the black dotted line that
follows ⌧T / r

�5/3 for r < rs and ⌧T / r
�1 for r > rs. For all

the cases, the Compton-y parameter, yC = (4/3)(h�2
e
i � 1)⌧T , which

measures the importance of Compton scattering, remains smaller
than unity since the mean energy of the particles is dominated by
the cooler baryonic electrons. As we discuss below, particles in this
scenario mainly cool via synchrotron emission and Compton scat-
tering is not important.

In the left panel of Fig. 3, we show the spectrum for di↵er-
ent values of ⇠, which sets the fraction of the injected electrons
accelerated into a power law. As a result, ⇠ a↵ects the mean en-
ergy of power-law electrons and consequently �m, where both are
inversely proportional to ⇠. The e↵ect of decreasing ⇠ is similar to
that of increasing ✏e. Since the number of electrons injected into the
emission region remains fixed, increasing the mean energy of the
distribution also increases the contribution of the non-thermal syn-
chrotron component. Consequently, the optical depth due to pair
production also increases with increasing ⇠.

The right panel of Fig. 3 shows the e↵ect on the spectrum
when the power-law index p of incoming electrons is fixed rather
than left to vary with the magnetization, as assumed in the model
here in Eq. (9). As the value of p is lowered, the synchrotron spec-
trum at E > Em becomes harder since LE / E

�p/2. By using 2D and
3D PIC simulations Sironi & Spitkovsky (2014) find that p & 1.5
for � . 50, which means that the synchrotron spectrum can be-
come even harder than shown in the figure if � is larger in the
emission region. Indeed, this type of spectrum with a quasi-thermal
peak and a hard power law component has been observed in, e.g,
GRB 090902B (Abdo et al. 2009). This type of scenario can also
explain the observation of a 31.5[(1 + z)/2.82] GeV photon in the
central-engine frame in this GRB during the prompt emission since
the hard synchrotron spectrum extends to GeV energies.

4.1.1 Radial Evolution of the Spectrum and Particle Distribution

We present the radial evolution of the spectrum, the corresponding
particle distribution, and flow parameters for the case with ✏e = 0.1
in Fig. 4. The spectrum is obtained for di↵erent optical depths, as
shown by the black dots on the red curve in the bottom-panel of
Fig. 4, and correspondingly di↵erent radii where we integrate the
comoving emissivity over radial extent �r/r = 1/2 centered on
the radius corresponding to the chosen ⌧T . The observed steady-
state spectrum, shown by the black dashed line, is e↵ectively a sum
over the optically thin spectra where the radial integration of the
comoving emissivity is performed for r > rph(✓̃). At early times,
the spectrum is dominated by the initial condition given by the
Wein-like spectrum from Eq. (14). Injection of power law electrons
gives rise to the fast-cooling synchrotron spectrum, which builds
up over time while the thermal peak cools and dilutes due to adi-
abatic expansion of the outflow. After the flow becomes optically

Figure 4. Top: Evolution of the spectrum sampled at di↵erent total optical
depth ⌧T that was emitted over half a dynamical time (�r/r = 1/2) centered
at the radius corresponding to ⌧T . The observer only sees the final spectrum,
shown using a dashed black line, which is e↵ectively a sum over the opti-
cally thin spectra with emission arising from r > rph(✓̃). Middle: Evolution
of particle distribution that remains dominated by the initial thermal compo-
nent since ⇠ = 0.2 in this case. Bottom: Radial evolution of flow parameters
with black dots marking the optical depth ⌧T for which the spectra is shown
in the top panel.
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Figure 3. Left: Observed steady-state spectrum from the injection of power-law electrons for di↵erent fraction ⇠ of total incoming electrons accelerated in
magnetic reconnection layers. Right: Spectrum for di↵erent power-law index p of the injected electrons with energy distribution n

0(�e) / ��p

e .

our scenario (i), then the time they had to cool is proportional to
their distance from that front, so that beyond a thin cooling layer
where the minimal �m electrons start cooling the electrons become
locally essentially mono-energetic with an energy inversely pro-
portional to their distance from the front. Once the emission be-
comes optically thick at E < Esa the location of an optical depth
of unity from which the photons reach the observer gets closer
to the front as E decreases, corresponding to a higher temperature
T
0 / E

0�5/8 so that altogether the observed spectral slope becomes
I
0RJ
E0 / E

02
T
0 / E

011/8 or ↵ = 3/8 (Granot et al. 2000; Granot &
Sari 2002). Once the location of optical depth of unity reaches the
thin cooling layer where kBT

0 ⇠ �mmec
2 = const, the usual ↵ = 1

photon index is recovered (corresponding to a second break energy
Eac, so that ↵ = 1 at E < Eac while ↵ = 3/8 at Eac < E < Esa.)

In the top-left panel of Fig. 2, we show the spectrum in the cos-
mological rest-frame of the central engine for di↵erent values of ✏e.
The spectrum shows a distinct peak at (1 + z)E ⇡ 200 keV, which
represents the adiabatically cooled thermal component. The spec-
trum below and above this peak energy is shaped by fast-cooling
synchrotron emission from power-law electrons, as shown by the
black dashed line, which peaks at E = Em ⇡ 1(1+ z)�1 MeV for the
✏e = 0.1 case. For smaller values of ✏e the synchrotron peak moves
to smaller energies and the normalization of the non-thermal com-
ponent with respect to the thermal one declines while producing a
distinct thermal bump. On the other hand, larger values of ✏e result
in a two-hump spectrum until the non-thermal synchrotron compo-
nent starts to dominate the spectrum completely.

The spectrum drops o↵ sharply at two characteristic energies.
At low energies near E = Esa ⇡ 0.5(1 + z)�1 keV, the synchrotron
spectrum becomes self-absorbed resulting in a sharp break. At high
energies near (1 + z)E = �mec

2 ⇡ 0.2 GeV, the emission is sup-
pressed due to ��-annihilation. The position of the high-energy
spectral break is a↵ected by the leaky-box prescription adopted in
this work, as argued in Sec. 3, and therefore the actual break is
expected to occur at a larger energy.

In the top-right panel of Fig. 2, we show the spectral slopes
by plotting d log ELE/d log E, where the peak (or local min-
ima/maxima) of the spectra occurs when the di↵erent curves cross
zero. At energies just above Esa, the spectrum is dominated by

fast-cooling synchrotron emission, and therefore has the expected
slope with LE / E

�1/2. Closer to the ELE-peak, the spectrum devi-
ates from this trend and becomes harder below the peak and softer
above it. This is due to the predominance of the thermal component.
However, the peak is not as hard as expected for a Wien spectrum
(ELE / E

4), the initial condition here. Instead, the spectral slope
just below the peak is much softer and remains below unity which is
observed for a large fraction of GRBs (e.g., Kaneko et al. 2006). At
larger energies above the peak, the synchrotron component again
tends to dominate for which LE / E

�p/2 when E > Em. In our
model, the value of p depends on the magnetization � according to
Eq. (9) and evolves over time, approaching p = 4 near the end of
dissipation at r = rs.

The particle distribution for both electrons and positrons at
r = rs, just before the injection of power-law electron ceases,
is shown in the bottom-left panel of Fig. 2 as a function of the
dimensionless momentum pe = �e�e. Since ⇠ = 0.2 here, the
colder baryonic electrons dominate the Thomson optical depth of
the flow. However, for larger values of ✏e, the fraction of produced
e
±-pairs increases and starts to dominate the optical depth. Starting

at high momentum, for pe > �m, with �m > 100, the curves re-
flect the distribution of the injected power law electrons that cools
via synchrotron emission. The distribution of cooled electrons at
10 . pe < �m reflects their steady-state distributed due to cool-
ing, where the di↵erential number of particles at a given �e re-
flects the cooling time at that �e, such that dn = �edn/d�e =

�ene(�e) / tc(�e) / ��1
e

which yields ne(�e) / ��2
e

. In momen-
tum space, ne(pe) = (d�e/dpe)ne(�e) = (pe/�e)ne(�e), and there-
fore ne(pe) / pe/�3

e
. For pe � 1, pe ⇡ �e and so ne(pe) / ��2

e

and dne/d log pe / d⌧T /d log pe / p
�1
e

. At low pe < 1, the particle
distribution is a Maxwellian that represents the initial colder bary-
onic electrons as well as the cooled injected power-law electrons
and the produced e

±-pairs. Energy exchange between the cooler
baryonic electrons and the injected power-law electrons and pro-
duced e

±-pairs occurs via Coulomb scattering, which is included
in the numerical code. For larger values of ✏e, the mean energy of
incoming power-law electrons is also larger, which results in the
respective Maxwellian distribution having a larger temperature.

For smaller values of ✏e < 0.1, the total optical depth is domi-
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nated by the baryonic electrons as shown in the bottom-right panel
of Fig. 2. When ✏e is increased, more energy is put into the non-
thermal component that results in increasing the number of pro-
duced e

±-pairs, as evident for the ✏e = 0.2 case. Due to pair produc-
tion the photospheric radius is extended to slightly larger radii by a
factor (1 + ⌧T,±/⌧T,e)3/5 over the baryonic one given in Eq. (6). For
example, ⌧T,± ⇡ ⌧T,e for ✏e = 0.2 which yields an enhancement in
the photospheric radius by a factor ⇠ 23/5 ⇡ 1.52. This is demon-
strated in the figure where the dotted black line shows the radial
evolution of the optical depth in the absence of pair-production and
the solid lines show the total optical depth including e

±-pairs. Af-
ter a surge in ⌧T due to the produced pairs, the solid lines display
similar radial evolution as compared to the black dotted line that
follows ⌧T / r

�5/3 for r < rs and ⌧T / r
�1 for r > rs. For all

the cases, the Compton-y parameter, yC = (4/3)(h�2
e
i � 1)⌧T , which

measures the importance of Compton scattering, remains smaller
than unity since the mean energy of the particles is dominated by
the cooler baryonic electrons. As we discuss below, particles in this
scenario mainly cool via synchrotron emission and Compton scat-
tering is not important.

In the left panel of Fig. 3, we show the spectrum for di↵er-
ent values of ⇠, which sets the fraction of the injected electrons
accelerated into a power law. As a result, ⇠ a↵ects the mean en-
ergy of power-law electrons and consequently �m, where both are
inversely proportional to ⇠. The e↵ect of decreasing ⇠ is similar to
that of increasing ✏e. Since the number of electrons injected into the
emission region remains fixed, increasing the mean energy of the
distribution also increases the contribution of the non-thermal syn-
chrotron component. Consequently, the optical depth due to pair
production also increases with increasing ⇠.

The right panel of Fig. 3 shows the e↵ect on the spectrum
when the power-law index p of incoming electrons is fixed rather
than left to vary with the magnetization, as assumed in the model
here in Eq. (9). As the value of p is lowered, the synchrotron spec-
trum at E > Em becomes harder since LE / E

�p/2. By using 2D and
3D PIC simulations Sironi & Spitkovsky (2014) find that p & 1.5
for � . 50, which means that the synchrotron spectrum can be-
come even harder than shown in the figure if � is larger in the
emission region. Indeed, this type of spectrum with a quasi-thermal
peak and a hard power law component has been observed in, e.g,
GRB 090902B (Abdo et al. 2009). This type of scenario can also
explain the observation of a 31.5[(1 + z)/2.82] GeV photon in the
central-engine frame in this GRB during the prompt emission since
the hard synchrotron spectrum extends to GeV energies.

4.1.1 Radial Evolution of the Spectrum and Particle Distribution

We present the radial evolution of the spectrum, the corresponding
particle distribution, and flow parameters for the case with ✏e = 0.1
in Fig. 4. The spectrum is obtained for di↵erent optical depths, as
shown by the black dots on the red curve in the bottom-panel of
Fig. 4, and correspondingly di↵erent radii where we integrate the
comoving emissivity over radial extent �r/r = 1/2 centered on
the radius corresponding to the chosen ⌧T . The observed steady-
state spectrum, shown by the black dashed line, is e↵ectively a sum
over the optically thin spectra where the radial integration of the
comoving emissivity is performed for r > rph(✓̃). At early times,
the spectrum is dominated by the initial condition given by the
Wein-like spectrum from Eq. (14). Injection of power law electrons
gives rise to the fast-cooling synchrotron spectrum, which builds
up over time while the thermal peak cools and dilutes due to adi-
abatic expansion of the outflow. After the flow becomes optically

Figure 4. Top: Evolution of the spectrum sampled at di↵erent total optical
depth ⌧T that was emitted over half a dynamical time (�r/r = 1/2) centered
at the radius corresponding to ⌧T . The observer only sees the final spectrum,
shown using a dashed black line, which is e↵ectively a sum over the opti-
cally thin spectra with emission arising from r > rph(✓̃). Middle: Evolution
of particle distribution that remains dominated by the initial thermal compo-
nent since ⇠ = 0.2 in this case. Bottom: Radial evolution of flow parameters
with black dots marking the optical depth ⌧T for which the spectra is shown
in the top panel.
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nated by the baryonic electrons as shown in the bottom-right panel
of Fig. 2. When ✏e is increased, more energy is put into the non-
thermal component that results in increasing the number of pro-
duced e

±-pairs, as evident for the ✏e = 0.2 case. Due to pair produc-
tion the photospheric radius is extended to slightly larger radii by a
factor (1 + ⌧T,±/⌧T,e)3/5 over the baryonic one given in Eq. (6). For
example, ⌧T,± ⇡ ⌧T,e for ✏e = 0.2 which yields an enhancement in
the photospheric radius by a factor ⇠ 23/5 ⇡ 1.52. This is demon-
strated in the figure where the dotted black line shows the radial
evolution of the optical depth in the absence of pair-production and
the solid lines show the total optical depth including e

±-pairs. Af-
ter a surge in ⌧T due to the produced pairs, the solid lines display
similar radial evolution as compared to the black dotted line that
follows ⌧T / r

�5/3 for r < rs and ⌧T / r
�1 for r > rs. For all

the cases, the Compton-y parameter, yC = (4/3)(h�2
e
i � 1)⌧T , which

measures the importance of Compton scattering, remains smaller
than unity since the mean energy of the particles is dominated by
the cooler baryonic electrons. As we discuss below, particles in this
scenario mainly cool via synchrotron emission and Compton scat-
tering is not important.

In the left panel of Fig. 3, we show the spectrum for di↵er-
ent values of ⇠, which sets the fraction of the injected electrons
accelerated into a power law. As a result, ⇠ a↵ects the mean en-
ergy of power-law electrons and consequently �m, where both are
inversely proportional to ⇠. The e↵ect of decreasing ⇠ is similar to
that of increasing ✏e. Since the number of electrons injected into the
emission region remains fixed, increasing the mean energy of the
distribution also increases the contribution of the non-thermal syn-
chrotron component. Consequently, the optical depth due to pair
production also increases with increasing ⇠.

The right panel of Fig. 3 shows the e↵ect on the spectrum
when the power-law index p of incoming electrons is fixed rather
than left to vary with the magnetization, as assumed in the model
here in Eq. (9). As the value of p is lowered, the synchrotron spec-
trum at E > Em becomes harder since LE / E

�p/2. By using 2D and
3D PIC simulations Sironi & Spitkovsky (2014) find that p & 1.5
for � . 50, which means that the synchrotron spectrum can be-
come even harder than shown in the figure if � is larger in the
emission region. Indeed, this type of spectrum with a quasi-thermal
peak and a hard power law component has been observed in, e.g,
GRB 090902B (Abdo et al. 2009). This type of scenario can also
explain the observation of a 31.5[(1 + z)/2.82] GeV photon in the
central-engine frame in this GRB during the prompt emission since
the hard synchrotron spectrum extends to GeV energies.

4.1.1 Radial Evolution of the Spectrum and Particle Distribution

We present the radial evolution of the spectrum, the corresponding
particle distribution, and flow parameters for the case with ✏e = 0.1
in Fig. 4. The spectrum is obtained for di↵erent optical depths, as
shown by the black dots on the red curve in the bottom-panel of
Fig. 4, and correspondingly di↵erent radii where we integrate the
comoving emissivity over radial extent �r/r = 1/2 centered on
the radius corresponding to the chosen ⌧T . The observed steady-
state spectrum, shown by the black dashed line, is e↵ectively a sum
over the optically thin spectra where the radial integration of the
comoving emissivity is performed for r > rph(✓̃). At early times,
the spectrum is dominated by the initial condition given by the
Wein-like spectrum from Eq. (14). Injection of power law electrons
gives rise to the fast-cooling synchrotron spectrum, which builds
up over time while the thermal peak cools and dilutes due to adi-
abatic expansion of the outflow. After the flow becomes optically

Figure 4. Top: Evolution of the spectrum sampled at di↵erent total optical
depth ⌧T that was emitted over half a dynamical time (�r/r = 1/2) centered
at the radius corresponding to ⌧T . The observer only sees the final spectrum,
shown using a dashed black line, which is e↵ectively a sum over the opti-
cally thin spectra with emission arising from r > rph(✓̃). Middle: Evolution
of particle distribution that remains dominated by the initial thermal compo-
nent since ⇠ = 0.2 in this case. Bottom: Radial evolution of flow parameters
with black dots marking the optical depth ⌧T for which the spectra is shown
in the top panel.
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nated by the baryonic electrons as shown in the bottom-right panel
of Fig. 2. When ✏e is increased, more energy is put into the non-
thermal component that results in increasing the number of pro-
duced e

±-pairs, as evident for the ✏e = 0.2 case. Due to pair produc-
tion the photospheric radius is extended to slightly larger radii by a
factor (1 + ⌧T,±/⌧T,e)3/5 over the baryonic one given in Eq. (6). For
example, ⌧T,± ⇡ ⌧T,e for ✏e = 0.2 which yields an enhancement in
the photospheric radius by a factor ⇠ 23/5 ⇡ 1.52. This is demon-
strated in the figure where the dotted black line shows the radial
evolution of the optical depth in the absence of pair-production and
the solid lines show the total optical depth including e

±-pairs. Af-
ter a surge in ⌧T due to the produced pairs, the solid lines display
similar radial evolution as compared to the black dotted line that
follows ⌧T / r

�5/3 for r < rs and ⌧T / r
�1 for r > rs. For all

the cases, the Compton-y parameter, yC = (4/3)(h�2
e
i � 1)⌧T , which

measures the importance of Compton scattering, remains smaller
than unity since the mean energy of the particles is dominated by
the cooler baryonic electrons. As we discuss below, particles in this
scenario mainly cool via synchrotron emission and Compton scat-
tering is not important.

In the left panel of Fig. 3, we show the spectrum for di↵er-
ent values of ⇠, which sets the fraction of the injected electrons
accelerated into a power law. As a result, ⇠ a↵ects the mean en-
ergy of power-law electrons and consequently �m, where both are
inversely proportional to ⇠. The e↵ect of decreasing ⇠ is similar to
that of increasing ✏e. Since the number of electrons injected into the
emission region remains fixed, increasing the mean energy of the
distribution also increases the contribution of the non-thermal syn-
chrotron component. Consequently, the optical depth due to pair
production also increases with increasing ⇠.

The right panel of Fig. 3 shows the e↵ect on the spectrum
when the power-law index p of incoming electrons is fixed rather
than left to vary with the magnetization, as assumed in the model
here in Eq. (9). As the value of p is lowered, the synchrotron spec-
trum at E > Em becomes harder since LE / E

�p/2. By using 2D and
3D PIC simulations Sironi & Spitkovsky (2014) find that p & 1.5
for � . 50, which means that the synchrotron spectrum can be-
come even harder than shown in the figure if � is larger in the
emission region. Indeed, this type of spectrum with a quasi-thermal
peak and a hard power law component has been observed in, e.g,
GRB 090902B (Abdo et al. 2009). This type of scenario can also
explain the observation of a 31.5[(1 + z)/2.82] GeV photon in the
central-engine frame in this GRB during the prompt emission since
the hard synchrotron spectrum extends to GeV energies.

4.1.1 Radial Evolution of the Spectrum and Particle Distribution

We present the radial evolution of the spectrum, the corresponding
particle distribution, and flow parameters for the case with ✏e = 0.1
in Fig. 4. The spectrum is obtained for di↵erent optical depths, as
shown by the black dots on the red curve in the bottom-panel of
Fig. 4, and correspondingly di↵erent radii where we integrate the
comoving emissivity over radial extent �r/r = 1/2 centered on
the radius corresponding to the chosen ⌧T . The observed steady-
state spectrum, shown by the black dashed line, is e↵ectively a sum
over the optically thin spectra where the radial integration of the
comoving emissivity is performed for r > rph(✓̃). At early times,
the spectrum is dominated by the initial condition given by the
Wein-like spectrum from Eq. (14). Injection of power law electrons
gives rise to the fast-cooling synchrotron spectrum, which builds
up over time while the thermal peak cools and dilutes due to adi-
abatic expansion of the outflow. After the flow becomes optically
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Figure 4. Top: Evolution of the spectrum sampled at di↵erent total optical
depth ⌧T that was emitted over half a dynamical time (�r/r = 1/2) centered
at the radius corresponding to ⌧T . The observer only sees the final spectrum,
shown using a dashed black line, which is e↵ectively a sum over the opti-
cally thin spectra with emission arising from r > rph(✓̃). Middle: Evolution
of particle distribution that remains dominated by the initial thermal compo-
nent since ⇠ = 0.2 in this case. Bottom: Radial evolution of flow parameters
with black dots marking the optical depth ⌧T for which the spectra is shown
in the top panel.
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nated by the baryonic electrons as shown in the bottom-right panel
of Fig. 2. When ✏e is increased, more energy is put into the non-
thermal component that results in increasing the number of pro-
duced e

±-pairs, as evident for the ✏e = 0.2 case. Due to pair produc-
tion the photospheric radius is extended to slightly larger radii by a
factor (1 + ⌧T,±/⌧T,e)3/5 over the baryonic one given in Eq. (6). For
example, ⌧T,± ⇡ ⌧T,e for ✏e = 0.2 which yields an enhancement in
the photospheric radius by a factor ⇠ 23/5 ⇡ 1.52. This is demon-
strated in the figure where the dotted black line shows the radial
evolution of the optical depth in the absence of pair-production and
the solid lines show the total optical depth including e

±-pairs. Af-
ter a surge in ⌧T due to the produced pairs, the solid lines display
similar radial evolution as compared to the black dotted line that
follows ⌧T / r

�5/3 for r < rs and ⌧T / r
�1 for r > rs. For all

the cases, the Compton-y parameter, yC = (4/3)(h�2
e
i � 1)⌧T , which

measures the importance of Compton scattering, remains smaller
than unity since the mean energy of the particles is dominated by
the cooler baryonic electrons. As we discuss below, particles in this
scenario mainly cool via synchrotron emission and Compton scat-
tering is not important.

In the left panel of Fig. 3, we show the spectrum for di↵er-
ent values of ⇠, which sets the fraction of the injected electrons
accelerated into a power law. As a result, ⇠ a↵ects the mean en-
ergy of power-law electrons and consequently �m, where both are
inversely proportional to ⇠. The e↵ect of decreasing ⇠ is similar to
that of increasing ✏e. Since the number of electrons injected into the
emission region remains fixed, increasing the mean energy of the
distribution also increases the contribution of the non-thermal syn-
chrotron component. Consequently, the optical depth due to pair
production also increases with increasing ⇠.

The right panel of Fig. 3 shows the e↵ect on the spectrum
when the power-law index p of incoming electrons is fixed rather
than left to vary with the magnetization, as assumed in the model
here in Eq. (9). As the value of p is lowered, the synchrotron spec-
trum at E > Em becomes harder since LE / E

�p/2. By using 2D and
3D PIC simulations Sironi & Spitkovsky (2014) find that p & 1.5
for � . 50, which means that the synchrotron spectrum can be-
come even harder than shown in the figure if � is larger in the
emission region. Indeed, this type of spectrum with a quasi-thermal
peak and a hard power law component has been observed in, e.g,
GRB 090902B (Abdo et al. 2009). This type of scenario can also
explain the observation of a 31.5[(1 + z)/2.82] GeV photon in the
central-engine frame in this GRB during the prompt emission since
the hard synchrotron spectrum extends to GeV energies.

4.1.1 Radial Evolution of the Spectrum and Particle Distribution

We present the radial evolution of the spectrum, the corresponding
particle distribution, and flow parameters for the case with ✏e = 0.1
in Fig. 4. The spectrum is obtained for di↵erent optical depths, as
shown by the black dots on the red curve in the bottom-panel of
Fig. 4, and correspondingly di↵erent radii where we integrate the
comoving emissivity over radial extent �r/r = 1/2 centered on
the radius corresponding to the chosen ⌧T . The observed steady-
state spectrum, shown by the black dashed line, is e↵ectively a sum
over the optically thin spectra where the radial integration of the
comoving emissivity is performed for r > rph(✓̃). At early times,
the spectrum is dominated by the initial condition given by the
Wein-like spectrum from Eq. (14). Injection of power law electrons
gives rise to the fast-cooling synchrotron spectrum, which builds
up over time while the thermal peak cools and dilutes due to adi-
abatic expansion of the outflow. After the flow becomes optically

1012 1013 1014
10-3

10-2

10-1

100

101

102

103

Figure 4. Top: Evolution of the spectrum sampled at di↵erent total optical
depth ⌧T that was emitted over half a dynamical time (�r/r = 1/2) centered
at the radius corresponding to ⌧T . The observer only sees the final spectrum,
shown using a dashed black line, which is e↵ectively a sum over the opti-
cally thin spectra with emission arising from r > rph(✓̃). Middle: Evolution
of particle distribution that remains dominated by the initial thermal compo-
nent since ⇠ = 0.2 in this case. Bottom: Radial evolution of flow parameters
with black dots marking the optical depth ⌧T for which the spectra is shown
in the top panel.
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is given by n
0 = L⌦/r2��1mpc

3 / (r2�)�1, which contributes a
characteristic Thomson optical depth of

⌧T =
n
0�T r

�
=

�T L⌦

r�2�1mpc3 = 1
L⌦,52

⇣
�
✏

⌘2/3

8

�5/3
1,3r

5/3
12

, (5)

where �T is the Thomson cross-section. For r < rs, � / r
1/3 and

therefore ⌧T / r
�5/3. However, when the flow starts to coast at � =

�1 the Thomson optical depth drops more slowly with radius, ⌧T /
r
�1. At ⌧T = 1 matter and radiation decouple, allowing the radiation

to stream freely, which defines the photospheric radius,

rph ⇡ 1012
L

3/5
⌦,52

⇣
�
✏

⌘2/5

8

�1,3
cm . (6)

Here we have only considered the Thomson optical depth of bary-
onic electrons. In Fig. 1, we show the di↵erent parameters for
which rph = rs. The vertical axis shows the typical range expected
for

⇣
�
✏

⌘
8
, where the lower end is relevant for a millisecond mag-

netar central engine and the higher end reflects the typical values
based on the observed variability timescale of prompt GRB emis-
sion. The solid lines show the model parameter space for fixed val-
ues of the jet power per unit solid angle, L⌦ . 1052 erg s�1sr�1, the
fiducial value adopted in this work. We consider the regime with
rph < rs when the flow is heated continuously as it transitions from
the optically thick to thin regimes. We will show below that copious
pair-production ensues when energy dissipation leads to particle ac-
celeration into a power-law energy distribution that emits energetic
synchrotron radiation. The created pairs extend the photospheric
radius by factors of a few.

2.2 Energy Dissipation & Particle Acceleration

Energy is dissipated gradually in the flow, for r < rs, as magnetic
field lines of opposite polarity come into contact and undergo mag-
netic reconnection. The rate of energy dissipation at any given ra-
dius can be obtained from the Poynting-flux power, such that (Gi-
annios & Spruit 2005)

dLdiss,⌦

dr
= �dLB,⌦

dr
= � d

dr

"
L⌦

 
1 � �
�1

!#
=

1
3

L⌦

�1

�

r
/ r
�2/3 . (7)

This implies a di↵erential dissipation dLdiss,⌦ / r
�2/3

dr or a cu-
mulative dissipation Ldiss,⌦(< r) / r

1/3 at r0 < r < rs. At r = rs,
when � = �1, magnetic energy dissipation peaks and stops, so
that fdis(r) = Ldiss,⌦(< r)/L⌦ = min[1, (r/rs)1/3]. Next, we relate
the dissipated power to the comoving dissipated energy density,
dLdiss,⌦ = r

2�2
c dU

0
diss, and express dr = ��cdt

0 ⇡ �cdt
0 for � � 1

and � ⇡ 1, which yields

dU
0
diss

dt0
=

1
3

L⌦

�1r3 . (8)

Magnetic reconnection leads to the acceleration of electrons into a
non-thermal power-law energy distribution, with dn

0 / ��p

e d�e for
�m < �e < �M , for which the mean energy per unit rest mass is
h�einth = [(p � 1)/(p � 2)]�m when p > 2. The power-law index p

has been shown to depend sensitively on the value of � (e.g., Sironi
& Spitkovsky 2014; Guo et al. 2015; Kagan et al. 2015; Werner
et al. 2016), where it can be approximated to follow the scaling
(Beniamini & Giannios 2017)

p = 4��0.3 . (9)

In models featuring internal shocks, 2 . p . 3 is left to vary as
one of the model parameters, whereas the � dependence of p, as

employed here, reduces the total number of model parameter by
one.

It is assumed here for simplicity that half of the dissipated
energy E

0
diss goes directly into the flow’s kinetic energy (see, e.g.,

Drenkhahn & Spruit 2002), while the other half goes towards par-
ticle acceleration and is divided between electrons (✏eE

0
diss/2) and

protons ((1 � ✏e)E0diss/2), where most of the latter energy is also
typically quickly converted into kinetic energy. In scenario (i) we
further assume that only a fraction ⇠ < 1 of electrons are actually
accelerated during magnetic reconnection, and the remaining frac-
tion (1�⇠) form a thermal distribution. The mean energy per baryon
is limited to�mpc

2, as this is the total dissipated energy per baryon-
electron for complete magnetic dissipation, however some particle
may in principle exceed the mean energy. Therefore, the mean en-
ergy per accelerated electron, for a total of Ne electrons, is given
as ⇠h�eimec

2 = (✏e/2)E0diss/Ne = ✏e�mpc
2/2, which yields an esti-

mate of the mean energy per rest mass energy of the non-thermal
electrons (Beniamini & Giannios 2017)

h�einth =
✏e
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�
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12

. (10)

For a given set of flow parameters, the ratio of the parameters ✏e and
⇠ controls the mean energy of the power-law accelerated electrons.
Since ✏e also controls the amount of energy put into the power-
law electrons, it also sets the normalization of the non-thermal syn-
chrotron emission component with respect to thermal component.

2.3 Thermal Radiation

The magnetic energy in the flow is dissipated over a range of radii
(r0 < r < rs) and as the flow expands to larger radii its Thomson
optical depth drops. Therefore, for a given set of model parameters
it is possible that energy dissipation proceeds continuously from
the optically thick to thin regions. Where most of the energy is dis-
sipated has consequences for the emergent radiation field spectrum.
If most of the dissipation occurs at smaller radii, when the flow is
optically thick (⌧T � 1), Compton interactions between the elec-
trons (or pairs) and the radiation field ensure that the flow maintains
(quasi-)thermal equilibrium. In this case, the flow expands adiabat-
ically and since it is radiation-dominated, the scaling of comov-
ing energy density with comoving volume follows U

0
th / V

0�4/3.
The energy density of the thermal radiation field can be related
to its comoving temperature, U

0
th = (4�SB/c)T 04th , where �SB is

the Stefan-Boltzmann constant, which yields T
0
th / V

0�1/3. For a
steady relativistic spherical flow expanding radially, the continuity
equation yields, r

2�(r)n03 = constant, so that V
0 / r

2�(r). This fi-
nally implies that T

0
th(r) / r

�7/9 when � / r
1/3. The scaling of the

thermal luminosity with radius can now be expressed as Lth,⌦ =

(4/3)r2�2
cU
0
th / r

�4/9. If an amount dLdiss,⌦ of power is dissipated
at radius rdiss, then the thermal luminosity surviving till any radius
r > rdiss is given by dLth,⌦(r) = (1/2)dLdiss,⌦(rdiss)(r/rdiss)�4/9, such
that the integrated thermal luminosity is,

R
r

0 dLth,⌦(r) / r
1/3, for

r < rs, and its value at the photosphere is

Lth,⌦(rph) ⇡ 3
14

L⌦

 
rph

rs

!1/3

= 8.3 ⇥ 1050
L

6/5
⌦,52

�1,3
⇣
�
✏

⌘1/5

8

erg s�1 sr�1 ,

(11)
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thin (⌧T < 1), the thermal peak starts to shift to higher energies
since the radiation field is no longer adiabatically cooled and the
thermal peak is simply blue-shifted to higher energies by the in-
creasing � from its value attained in the comoving frame at ⌧T = 1.
High-energy spectrum at energies E > �mec

2/(1 + z) is suppressed
due to (�� ! e

±) pair-production. The produced e
±-pairs annihilate

and yield a sharply peaked spectral component at E = �mec
2/(1+z)

at very early times.
In this case ⇠ = 0.2, and therefore the initial optical depth

is dominated by thermal baryonic electrons. However, copious pair
production ensues after the injection of power law electrons and e

±-
pairs start to become comparable to the baryonic electrons in opti-
cal depth. The injection of power law electrons also raises the mean
energy per particle h�ei, as can be seen from the rightward shift of
the peak of the thermal particle distribution in the middle panel of
Fig. 4 as well as from the radial evolution of h�ei � 1 shown in the
bottom panel. However, the Compton-y parameter remains below
unity as the rate of heating is insu�cient to make Comptonization
important. The cooled power law electrons as well as the produced
pairs ultimately join the thermal distribution.

The power-law electrons cool primarily due to synchrotron
emission. This can be understood by comparing the magnetic
field energy density to that of the thermal radiation field. For
r > r⌧0, where r⌧0 is the radius corresponding to ⌧T0 when in-
jection of power-law electrons commences, the comoving energy
density of the thermal component is U

0
th(r) = U

0
0(r/r⌧0)�28/9 =

U
0
0⌧
�28/15
T0 (r/rph)�28/9 since the injected energy is no longer com-

pletely thermalized. Therefore, the thermal component simply adi-
abatically cools for r > r⌧0. The initial energy density is given by
U
0
0 ⇡ (4�SB/c)[T 0ph(r⌧0/rph)�7/12]4 = (4�SB/c)T 04ph⌧

7/5
T0 . The energy

density of the magnetic field is given by U
0
B
= B

02/8⇡, which then
yields

U
0
B

U
0
th
= 69

�1,3
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�
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⌘1/5

8

L
1/5
⌦,52⌧

4/15
T,e

, (18)

indicating that power-law electrons mainly cool by synchrotron
emission. In addition, Compton cooling of injected electrons is sup-
pressed as it occurs in the Klien-Nishina regime for photons with
energy above

E =
�

(1 + z)�m

mec
2 = 171
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12
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keV , (19)

which suggests that the non-thermal synchrotron component above
the thermal peak cannot cool the power-law electrons by inverse
Compton scattering.

The injected energy density at a given radius r̃ is re-
duced as the flow expands adiabatically, such that dU

0
inj(r) =

dU
0
inj(r̃)(r̃/r)�28/9, where the injected energy density between r̃ and

r̃ + dr̃ is dU
0
inj(r̃) = (✏e/2)[dU

0
diss(r̃)/dt

0]dr̃/�c. The total injected
energy density surviving at r � rinj, where rinj is the radius where
energy injection commences, is obtained by integrating over r̃ that
yields

U
0
inj(r) =

3
7
✏eL⌦

c�1

1
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diss
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The non-thermal emission will begin to dominate the thermal com-
ponent when U

0
th/U

0
inj < 1, where

U
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th
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0
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= 4 ⇥ 10�2
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For the fiducial parameters chosen in Fig. 4, the above condition
is not satisfied before dissipation ceases, and therefore the non-
thermal synchrotron component never fully dominates over the
thermal component. The above estimate is strictly valid when the
flow is optically thick for which the radiation field energy density
follows the scaling U

0
th / r

�28/9. Adiabatic cooling of the radiation
field stops once the flow becomes optically thin, at which point it
only su↵ers density dilution due to the volume expansion but no
cooling.

4.2 Distributed Heating of Particles

Earlier we explored the scenario where a fraction of the incom-
ing baryonic electrons are directly accelerated into a power law
energy distribution at magnetic reconnection sites. Here we con-
sider an alternative, where magnetic energy dissipation in the flow,
e.g. due to MHD instabilities, leads to distributed heating of all
electrons (Thompson 1994; Ghisellini & Celotti 1999; Giannios
2006; Giannios & Spruit 2007; Giannios 2008). The comoving en-
ergy dissipation rate per unit volume, dU

0
diss/dt

0, is given in Eq. (8)
out of which only a fraction ✏e/2 goes into heating the electrons
in the emission region, such that the volumetric heating rate is
dU
0
e
/dt
0 = (✏e/2)dU

0
diss/dt

0. Deeper in the flow, at larger optical
depths ⌧T � 1, the thermal radiation field is the dominant coolant
(see Eq. 18). The continuous heating and simultaneous cooling of
particles drives their energy distribution to peak at a critical temper-
ature at which point heating is balanced by cooling. The Compton
cooling rate per unit volume for a thermal electron distribution is
given by

dU
0
c

dt0
= 4n

0
e

 
kBT

0
e

mec
2

!
�T cU

0
th , (22)

where again we make the simplifying assumption that approxi-
mately half of the dissipated energy goes directly towards accel-
erating the flow and the remaining half converts to the thermal ra-
diation field with energy density U

0
th. By equating the cooling rate

to that of particle heating, dU
0
c
/dt
0 = dU

0
e
/dt
0, we find the critical

temperature at which particles congregate

kBT
0
e,crit = 138

✏e�
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12
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keV ⇡ 132
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⌧T,e

keV . (23)

This temperature is smaller at smaller radii or at larger optical
depths, however, it cannot become smaller than that of the thermal
radiation field. Therefore, below an equilibrium radius or above the
optical depth (Giannios 2006),

req = 5 ⇥ 1010
L

5/9
⌦,52

⇣
�
✏

⌘1/3

8

✏4/9e �
8/9
1,3

cm (24)

⌧eq = 133
✏20/27

e L
2/27
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⇣
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8

�5/27
1,3

, (25)

radiation and particles are in thermal equilibrium. Above that ra-
dius, electrons fall out of equilibrium and attain a higher e↵ective

temperature (since the distribution becomes narrowly peaked and
does not remain Maxwellian) as compared to the thermal radiation
field. The details of how distributed heating is implemented in the
simulation are presented in Appendix (A).

As the flow expands, the energy density of the thermal radi-
ation field declines. This increases the timescale over which par-
ticles are cooled by Comptonization. Particles are also cooling
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thin (⌧T < 1), the thermal peak starts to shift to higher energies
since the radiation field is no longer adiabatically cooled and the
thermal peak is simply blue-shifted to higher energies by the in-
creasing � from its value attained in the comoving frame at ⌧T = 1.
High-energy spectrum at energies E > �mec

2/(1 + z) is suppressed
due to (�� ! e

±) pair-production. The produced e
±-pairs annihilate

and yield a sharply peaked spectral component at E = �mec
2/(1+z)

at very early times.
In this case ⇠ = 0.2, and therefore the initial optical depth

is dominated by thermal baryonic electrons. However, copious pair
production ensues after the injection of power law electrons and e

±-
pairs start to become comparable to the baryonic electrons in opti-
cal depth. The injection of power law electrons also raises the mean
energy per particle h�ei, as can be seen from the rightward shift of
the peak of the thermal particle distribution in the middle panel of
Fig. 4 as well as from the radial evolution of h�ei � 1 shown in the
bottom panel. However, the Compton-y parameter remains below
unity as the rate of heating is insu�cient to make Comptonization
important. The cooled power law electrons as well as the produced
pairs ultimately join the thermal distribution.

The power-law electrons cool primarily due to synchrotron
emission. This can be understood by comparing the magnetic
field energy density to that of the thermal radiation field. For
r > r⌧0, where r⌧0 is the radius corresponding to ⌧T0 when in-
jection of power-law electrons commences, the comoving energy
density of the thermal component is U

0
th(r) = U

0
0(r/r⌧0)�28/9 =

U
0
0⌧
�28/15
T0 (r/rph)�28/9 since the injected energy is no longer com-

pletely thermalized. Therefore, the thermal component simply adi-
abatically cools for r > r⌧0. The initial energy density is given by
U
0
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indicating that power-law electrons mainly cool by synchrotron
emission. In addition, Compton cooling of injected electrons is sup-
pressed as it occurs in the Klien-Nishina regime for photons with
energy above
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which suggests that the non-thermal synchrotron component above
the thermal peak cannot cool the power-law electrons by inverse
Compton scattering.

The injected energy density at a given radius r̃ is re-
duced as the flow expands adiabatically, such that dU

0
inj(r) =

dU
0
inj(r̃)(r̃/r)�28/9, where the injected energy density between r̃ and

r̃ + dr̃ is dU
0
inj(r̃) = (✏e/2)[dU

0
diss(r̃)/dt

0]dr̃/�c. The total injected
energy density surviving at r � rinj, where rinj is the radius where
energy injection commences, is obtained by integrating over r̃ that
yields
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The non-thermal emission will begin to dominate the thermal com-
ponent when U

0
th/U

0
inj < 1, where
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For the fiducial parameters chosen in Fig. 4, the above condition
is not satisfied before dissipation ceases, and therefore the non-
thermal synchrotron component never fully dominates over the
thermal component. The above estimate is strictly valid when the
flow is optically thick for which the radiation field energy density
follows the scaling U

0
th / r

�28/9. Adiabatic cooling of the radiation
field stops once the flow becomes optically thin, at which point it
only su↵ers density dilution due to the volume expansion but no
cooling.

4.2 Distributed Heating of Particles

Earlier we explored the scenario where a fraction of the incom-
ing baryonic electrons are directly accelerated into a power law
energy distribution at magnetic reconnection sites. Here we con-
sider an alternative, where magnetic energy dissipation in the flow,
e.g. due to MHD instabilities, leads to distributed heating of all
electrons (Thompson 1994; Ghisellini & Celotti 1999; Giannios
2006; Giannios & Spruit 2007; Giannios 2008). The comoving en-
ergy dissipation rate per unit volume, dU

0
diss/dt

0, is given in Eq. (8)
out of which only a fraction ✏e/2 goes into heating the electrons
in the emission region, such that the volumetric heating rate is
dU
0
e
/dt
0 = (✏e/2)dU

0
diss/dt

0. Deeper in the flow, at larger optical
depths ⌧T � 1, the thermal radiation field is the dominant coolant
(see Eq. 18). The continuous heating and simultaneous cooling of
particles drives their energy distribution to peak at a critical temper-
ature at which point heating is balanced by cooling. The Compton
cooling rate per unit volume for a thermal electron distribution is
given by

dU
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dt0
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where again we make the simplifying assumption that approxi-
mately half of the dissipated energy goes directly towards accel-
erating the flow and the remaining half converts to the thermal ra-
diation field with energy density U

0
th. By equating the cooling rate

to that of particle heating, dU
0
c
/dt
0 = dU

0
e
/dt
0, we find the critical

temperature at which particles congregate
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This temperature is smaller at smaller radii or at larger optical
depths, however, it cannot become smaller than that of the thermal
radiation field. Therefore, below an equilibrium radius or above the
optical depth (Giannios 2006),
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radiation and particles are in thermal equilibrium. Above that ra-
dius, electrons fall out of equilibrium and attain a higher e↵ective

temperature (since the distribution becomes narrowly peaked and
does not remain Maxwellian) as compared to the thermal radiation
field. The details of how distributed heating is implemented in the
simulation are presented in Appendix (A).

As the flow expands, the energy density of the thermal radi-
ation field declines. This increases the timescale over which par-
ticles are cooled by Comptonization. Particles are also cooling

MNRAS 000, 1–17 (2020)



Gill, Granot & Beniamini: GRB spectrum from gradual dissipation in a 

magnetized  outflow   

10 Gill, Granot, & Beniamini

10-1 100 101 102 103 104 105 106
1048

1049

1050

1051

1052

100 101 102 103 104 105
-1

0

1

2

3

4

10-1 100 101 102
10-5

10-4

10-3

10-2

10-1

100

1012 1013 1014
10-2

10-1

100

101

102

103

Figure 5. Top-left: Observed steady-state spectrum with distributed heating of particles commencing at ⌧T0 = 100. The final spectrum is obtained at ⌧T ⌧ 1
when the flow is optically thin. For the chosen fiducial parameters the equilibrium optical depth is ⌧eq ⇡ 32. Top-right: Spectral slopes with the photon index
given by ↵ = �2 + d log(ELE)/d log E. Bottom-left: Electron and positron particle distribution at r = rs, the radius at which the mono-energetic distribution
are expected to be the hottest. Bottom-right: Evolution of flow parameters with radius.

due to adiabatic expansion, the timescale for which is (see Ap-
pendix (A)) t

0
ad = (3/7)r/�c / r

2/3 for r < rs. The Compton
cooling timescale is t

0
c
= 3mec/4�T�eU

0
th, for particles with LF �e,

where U
0
th = U

0
0(r/r⌧0)�28/9 and r⌧0 is the radius corresponding to

⌧T0 where heating of particles commences. Comparison of the two
timescales yields
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which suggest that particles cool predominantly via Comptoniza-
tion.

In the top-left panel of Fig. 5, we present the observed steady-
state spectrum for a heated flow for di↵erent values of ✏e. For the
chosen fiducial parameters, ⌧eq ⇡ 32, and therefore the condition
for thermal equilibrium holds for ⌧T0 = 100, the initial baryonic
electron Thomson optical depth at which the simulation is initial-
ized. In all cases, due to multiple Compton scattering, the spectrum
extends smoothly to high energies above the adiabatically cooled
thermal peak that appears at (1+z)E ⇠ 1 MeV. This energy is higher

due to Comptonization than that expected from adiabatic cooling
which freezes at the photospheric radius. These results are consis-
tent with that shown in Giannios (2006); Giannios & Spruit (2007);
Giannios (2008) who used a Monte-Carlo code without pair cas-
cade e↵ects. The e↵ect of increasing ✏e is to put more energy into
the non-thermal Comptonized spectral component and to make the
spectrum harder above the thermal peak. In addition, for larger ✏e a
pronounced peak around (1 + z)E ⇡ 0.5 keV develops due to self-
absorbed synchrotron emission from mildly relativistic electrons.

The low-energy spectral index, as shown in the top-right panel
of Fig. 5, becomes softer with increasing ✏e. It only approaches the
photon index ↵ = �2+d log(ELE)/d log E ⇠ �1 typically observed
in prompt GRB emission for ✏e & 0.2, and below that the low-
energy spectrum appears to be too hard. This can be understood
by looking at the evolution of the Compton-y parameter shown in
the bottom-right panel of Fig. 5. For larger ✏e, yC is also larger and
substantially exceeds unity in the ✏e = 0.2 case. This results in
the Comptonization of the softer synchrotron photons towards the
thermal peak which softens the low-energy spectrum. For smaller
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Gill, Granot & Beniamini: GRB spectrum from gradual dissipation in a 

magnetized  outflow   

the two particle  heating scenarios lead to different spectra and  corresponding 

    particle distributions


in  both cases, the spectrum  exhibitis two main components: a thermal component 
peaking at 0.2-1 MeV and a non-thermal component extending to high energies from the 
thermal peak .  The origin of the non-thermal component is different in  the two scenarios   


when power-law electrons are injected into the dissipation region, the non-thermal 

    component arises  due to the fast-cooling synchrotron emission. It dominates the         
spectrum below the thermal peak < 50 keV, and above the thermal peak 

   1 MeV < E < 100 MeV. The low energy photon index:  -1.6 < 𝛼 <  -1.2  

when  the dissipated energy is distributed among all the electrons (and the produced 
e± pairs are subdominant), the non-thermal  spectrum above  the thermal peak arises due 
to Comptonization of the softer thermal  peak photons. This also leads to softening of the 
spectrum below the thermal  peak as Compton-Y parameter grows above  unity when 


    the flow  becomes optically thin. The low energy photon index 𝛼 > -1 


