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Magnetic jet: acceleration

The acceleration of a magnetic jet can proceed either by dissipation of
magnetic field (if the magnetic field has the right geometry and scale), or by
adiabatic expansion of the outflow.

© magnetization parameter:
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. conservation of energy flux:

R? [7T,O/CQF21} + B’QFQU/ZL] 0;(R)” =L
. conservation of mass flux:

TR*0;(R)?pTv =M

Goldreich & Julian 1970

P(1+0) = L/Mc* = Ty(1 + o) Drankhann 2002 [~ o



Magnetic jet: energy dissipation
The rate of magnetic energy dissipation is governed by the reconnection rate
between neighbouring regions of different field line direction.

The reconnection time scale = (variation length scale) / vin
Vin = velocity at which field lines of different directions are brought togehter
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Gill, Granot, Beniamini: _ \ y
The rate of reconnection set by the inflow Yo ™
plasma velocity, vin = € va 5] = h
(a fraction € ~ 0.1 of the Alfvén speed) { | ’ | /
VIin

Kumar & Zhang 2015
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Flow dynamics Foo2
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steady Poynting flux dominated relativistic spherical

flow, with a striped wind magnetic field structure — Lo = 1072
— Lo s = 107"
characteristic length scale A over which B field lines —Lgs =1

reverse polarity is set by the central engine’s rotational 10%
angular frequency, A1 ~ mc/2 ~ 107 cm s
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Magnetic energy is dissipated in the flow when field lines

of opposite polarity are brought together and undergo 1015
reconnection.
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shocks which become efficient when o < 1

Lo = LB,Q + Lk,g + L%Q
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Energy dissipation and particle acceleration

~ energy is dissipated gradually in the flow as magnetic field lines of opposite polarity come into contact and undergo
magnetic reconnection

The rate of energy dissipation:

c~
~ |

1 Lg
31

o

r—2/3

dLsisso  dLpo d 71 I\l _
dr dr dr | B

Lgisso(< r) o rBPatry < r < r,

Half of the dissipated energy goes directly into the flow’s kinetic energy, while the other half goes towards

particle acceleration. It is divided between electrons (ce Ediss/2) and protons ((1 - €e) Ediss/2), where most of the
latter energy is also typically quickly converted into kinetic energy. Acceleration of electrons (Beniamini & Giannios

2017):
dn’ o« v,"dy, p = 40703

4+ only a fraction { < 1 of electrons is accelerated during magnetic reconnection, and the remaining
fraction (1- ¢{) forms a thermal distribution
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Numerical treatment

one-zone kinetic code (Gill & Thompson 2014), lacking spatial and angular information of the flow and the

radiation field. The emission is approximated to arise from a blob of comoving causal size r/T, that is
radially localized

Compton scattering, cyclo-synchrtoron emission and self-absorption, pair production and annihilation,
Coulomb interaction among the pairs

magnetic energy dissipation commences when the flow is highly optically thick T =100. Wien-like spectrum:
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power law electrons emit synchrotron radiation with characteristic energies (p =4 wheno =1 atr =rs):
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radial evolution of the spectrum, the corresponding particle distribution, and flow
parameters in case € = 0.1

[ LQ’52 =1, ()\/6)8 =4, Foo’;), = 0.5, f =0.2, ¢, =0.1 1 E I !
102 F— 77 = 50 - - Observed Spectrum 73
f— 7 =10 : 102k
L =1 Tro = 100 ] ;
\ 3
'T/-\ 105! E"— T = 0.5 // ~ _E 1015
w  f— =005 ¢ ~ : s
EO I L
L 10°F
r 10

~ C [
Lﬂ 10—15

1049 3 B
F 10_2 E

1048 10—3

10°1 10° 10! 102 10* 10t 10° 108
(14 2)E (keV)

102 E

drr/dlog pe

10k
105F
10-7

LRLLL s

1078 -

1095
0% 102




Gill, Granot & Beniamini: GRB spectrum from gradual dissipation in a
magnetized outflow

alternative heating of particles: magnetic energy dissipation in the flow, e. g. due to MHD
instabilities, leads to distributed heating of all electrons

dUc,liss . 1 Lo

dr gfoor3 i

dUdl = (e,/2)dU,

1SS

the continuous heating and simultaneous cooling of particles drives their energy
distribution to peak at a critical temperature at which point heating is balanced by
cooling
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observed steady-state spectrum spectral slopes
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- the two particle heating scenarios lead to different spectra and corresponding
particle distributions

~ In both cases, the spectrum exhibitis two main components: a thermal component
peaking at 0.2-1 MeV and a non-thermal component extending to high energies from the
thermal peak . The origin of the non-thermal component is different in the two scenarios

~ when power-law electrons are injected into the dissipation region, the non-thermal
component arises due to the fast-cooling synchrotron emission. |t dominates the
spectrum below the thermal peak < 50 keV, and above the thermal peak
1 MeV < E <100 MeV. The low energy photon index: -1.6<a < -1.2

> when the dissipated energy is distributed among all the electrons (and the produced
e+ pairs are subdominant), the non-thermal spectrum above the thermal peak arises due
to Comptonization of the softer thermal peak photons. This also leads to softening of the
spectrum below the thermal peak as Compton-Y parameter grows above unity when
the flow becomes optically thin. The low energy photon index a > -1



