Recent developments on particle acceleration in magnetized turbulence

1. Comisso, L., & Sironi, L. : The Interplay of Magnetically Dominated Turbulence and Magnetic Reconnection in Producing Nonthermal Particles, ApJ, 886, 122 (2019).

2. Comisso, L., & Sironi, L. : Particle Acceleration in Relativistic Plasma Turbulence, PRL, 121, 255101 (2018).

3. Zhdankin, V. : Particle energization in relativistic plasma turbulence: solenoidal versus compressive driving, arXiv e-prints, arXiv:2106.00743 (2021).

4. Zhdankin, V., Uzdensky, D. A., Werner, G. R., & Begelman, M. C. : Electron and Ion Energization in Relativistic Plasma Turbulence, PRL, 122, 055101 (2019).

5. Zhdankin, V., Uzdensky, D. A., Werner, G. R., & Begelman, M. C. : System-size Convergence of Nonthermal Particle Acceleration in Relativistic Plasma Turbulence, ApJ, 867, L18 (2018).

6. Zhdankin, V., Werner, G. R., Uzdensky, D. A., & Begelman, M. C. : Kinetic Turbulence in Relativistic Plasma: From Thermal Bath to Nonthermal Continuum, PRL, 118, 055103 (2017).

7. Wong, K., Zhdankin, V., Uzdensky, D. A., Werner, G. R., & Begelman, M. C.: First-principles Demonstration of Diffusive-advective Particle Acceleration in Kinetic Simulations of Relativistic Plasma Turbulence, ApJ, 893, L7 (2020).

+ Lemoine, M., Malkov, M. A.: Powerlaw spectra from stochastic acceleration, MNRAS, 499, 4972 (2020). Lemoine, M.: Particle acceleration in strong MHD turbulence, arXiv:2104.08199 (2021).

Pulsar wind nebulae as extreme lepton accelerators...

→ in the nebula: magnetization
$$\sigma = \frac{u_{magnetic}}{u_{plasma}} \sim 1$$
 (relativistic turbulence!),
... composition pair plasma, $\ell_c \sim 0.1 \text{ pc}, \frac{c}{\omega_p} \sim 10^{-6} \text{ pc}$

Ref.: e.g. Horns & Aharonian 04; Kirk+09

Evidence for non-thermal electron acceleration in BH environments...

→ Flares seen in NIR and X around SgrA*: suggest powerlaw extension with slope \sim -3, + synchrotron cooling break... ⇒ key scenarios: reconnection (at large magnetization), or turbulence (if large fluctuations)?

<u>NB</u>: as in many astrophysical sources, a huge hierarchy between macroscopic scales (I_c turbulence scale, r_g) and microscopic scales (r_L): $r_g/r_L \sim 10^6$ for a GeV electron in 1G field... a challenge for numerical simulations!

Non-thermal electrons in jets... on all scales!

© Chandra: X-ray jet from Cen A

 \rightarrow in large-scale jets:

radiation in X-ray over length scales \gg synchrotron cooling length requires some continuous acceleration, with index $\sim -2 \dots -3$, e.g. turbulence or shear? Refs.: Liu+17, Rieger 19

\rightarrow in blazars:

generic SSC or synchrotron+EC model from non-thermal electrons... acceleration physics: reconnection, turbulence, shocks?

e.g. for turbulence:

$$Turbulence characteristics:$$

→ energy injection scale: ℓ_c

→ magnetization: $σ = \frac{u_{\text{magnetic}}}{u_{\text{plasma}}}$

→ Alfvén 4-velocity: $u_A = \sqrt{σ}$

 \Rightarrow relativistic turbulence: $\sigma > 1$

 \rightarrow dissipation scales: at plasma Larmor or skin depth scale c/ω_p

 \Rightarrow dynamic range in PIC:

$$rac{\ell_{
m c}}{c/\omega_p}\sim \mathcal{O}(100)$$

... using PIC (~ electromagnetic N-body code) to perform self-consistent, ab initio virtual experiments of relativistic magnetized turbulence

inertial range: MHD-type turbulent cascade kinetic scales: dissipative processes (reconnection)

+ self-consistent particle-turbulence interaction \rightarrow particle acceleration

Zhdankin+18

Table 1. List of largest simulations

Case	N^3	$L/2\pi\rho_{e0}$	σ_0	Tc/L	$N_{\rm ppc}$	$R_{\mathrm{err},T}(\%)$	$R_{\mathrm{err},L/c}(\%)$
A2	1024^{3}	108.6	0.5	22.3	128	3.7%	0.16%
A4	1024^{3}	108.6	2	13.4	192	3.0%	0.23%
B1	768^{3}	61.1	0.25	22.3	256	3.7%	0.16%
B2	768^{3}	81.5	0.5	10.1	256	0.6%	0.06%
B3	768^{3}	81.5	1	11.2	128	2.3%	0.21%
B4	768^{3}	81.5	2	9.2	128	3.3%	0.36%
B5	768^{3}	81.5	4	13.4	96	2.4%	0.18%
C1	512^{3}	40.7	0.25	22.3	256	2.3%	0.10%
C2	512^{3}	54.3	0.5	17.9	128	0.8%	0.05%
C3	512^{3}	54.3	1	14.1	128	2.0%	0.14%
C4	512^{3}	54.3	2	15.1	128	2.6%	0.17%
C5	512^{3}	54.3	4	15.6	128	2.5%	0.16%

Zhdankin+18

A two-stage acceleration process:

- initially, plasma is thermal: $\langle \gamma_0 \rangle \sim 3$

[gyroradius ~ skin depth at σ ~0(1)]

- first stage: particles are accelerated to $\langle \gamma \rangle \sim 4\sigma \langle \gamma_0 \rangle$ in reconnection layers (dissipative physics on kinetic scales)

 second stage: particles are accelerated to larger energies through Fermi-type (stochastic Fermi acceleration) processes...

Comisso+Sironi 18,19

 a thermal core, heating through dissipative processes at kinetic scales (reconnection)...

- a non-thermal (soft) powerlaw tail from Fermi acceleration

- a thermal core, heating through dissipative processes at kinetic scales (reconnection)...

- a non-thermal (soft) powerlaw tail from Fermi acceleration

- tendency: spectrum becomes harder with increasing magnetization (= increasing v_A/c), with increasing amplitude ($\delta B/B$)...

Measured momentum diffusion coefficient (in supra-thermal tail):

$$D_{pp} \sim 0.1 \left< \delta u^2 \right> \frac{p^2}{\ell_{\rm c}/c}$$

 \rightarrow a powerlaw spectra from Fermi acceleration in a closed box?

Comisso+Sironi 18,19

PIC simulations invalidate the Fokker-Planck description of stochastic acceleration¹

→ consequence: Fokker-Planck is not a good model... a powerlaw tail develops, drift is slow, unlike predictions!

 \rightarrow Interpretation²: segregation in t_{acc} among particle population...

Refs: 1. Zhdankin+17-19, Wong+19, Comisso+Sironi 18,19; Nättilä+Beloborodov21 2. M.L. & Malkov 20

Stochastic particle acceleration is shaped by the intermittency of the turbulence

Fokker-Planck: derives from a Langevin process with Gaussian noise, zero time coherence... ... here non-Gaussian noise, macroscopic coherence time

→ acceleration sites are localized in sparse regions, with small filling fraction, large excursions in strength

Some consequences for phenomenology and open questions

1. spectrum differs noticeably from std Fokker-Planck predictions

→ no pile-up distribution, quasi-powerlaw, slow drift: impact on phenomenology? → w/ improved model, including effects of radiative losses → recipe for inclusion in MHD/GRMHD simulations?

2. extrapolation to large hierarchy $\ell_c/(c/\omega_p)$... and other physical conditions

 \rightarrow quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...

 \rightarrow dependence on magnetization, beta-parameter, physics of stirring, composition etc.

3. impact of intermittency on transport, acceleration and radiative spectra

→ first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ? → on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales! → inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)

 \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

Some consequences for phenomenology and open questions

3. impact of intermittency on transport, acceleration and radiative spectra

- \rightarrow no one-to-one relation $t_{acc}(\gamma)$: distribution of acceleration/scattering timescales \Rightarrow ?
- \rightarrow on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales!
- \rightarrow inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)
- \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

e.g., Bykov+13 in connection to Crab flares, Khangulyan+21 for synchrotron in inhomogeneous B

Some consequences for phenomenology and open questions

3. impact of intermittency on transport, acceleration and radiative spectra

- \rightarrow first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ?
- \rightarrow on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales!
- \rightarrow inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)
- \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

Zhdankin+18:

PIC, relativistic + radiative sims,

anisotropic momentum distribution at large momenta

z (c/w, AYcool 0.00 0.25 0.50 0.75 1.00 10 (Å)ulp/Np 101 10° 10⁰ 10¹ 10² 10³

Injection in reconnection layers

Comisso+Sironi 19

Turbulence in e-ion plasmas: differential heating

Zhdankin+19