

# Radiation mediated shocks in gamma-ray bursts (and other things)

IAP high-energy group meeting, 2022 01 20 Filip Samuelsson, Christoffer Lundman, & Felix Ryde



# Other works



### Ultra-high-energy cosmic rays

THE ASTROPHYSICAL JOURNAL, 902:148 (15pp), 2020 October 20 © 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/abb60c



#### Constraining Low-luminosity Gamma-Ray Bursts as Ultra-high-energy Cosmic Ray Sources Using GRB 060218 as a Proxy

Filip Samuelsson<sup>1</sup>, Damien Bégué<sup>2</sup>, Felix Ryde<sup>1</sup>, Asaf Pe'er<sup>3</sup>, and Kohta Murase<sup>4,5,6,7</sup>

THE ASTROPHYSICAL JOURNAL, 876:93 (17pp), 2019 May 10 © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab153c



#### The Limited Contribution of Low- and High-luminosity Gamma-Ray Bursts to Ultrahigh-energy Cosmic Rays

Filip Samuelsson<sup>1,2</sup>, Damien Bégué<sup>3</sup>, Felix Ryde<sup>1,2</sup>, and Asaf Pe'er<sup>4,5</sup>



#### Idea

- If cosmic-rays are accelerated, so are electrons
- Electrons in magnetic fields radiate
- Is this radiation compatible with observations?



# Magnetic field (prompt phase)

Acceleration time scale shorter than cooling time scales





# Synchrotron flux (prompt phase)





# Possible collaboration?

- UHECR, neutrinos
- Electron synchrotron
- Shock acceleration
- Low-luminosity GRBs
- Thermal electrons



### Proton synchrotron

#### Bethe-Heitler signature in proton synchrotron models for gamma-ray bursts

D. BÉGUÉ  $(D, {}^1$  F. SAMUELSSON  $(D, {}^2$  AND A. PE'ER  $(D^1)$ 



### Idea

- Synchrotron fits suggests marginally fast cooling, which suggests proton synchrotron (Ghisellini+ 2020)
- High-energy protons can create Bethe-Heitler pairs
  - Bethe-Heitler pair production (*pe*)

$$p + \gamma \rightarrow e^+ + e^-.$$

• What is the emission from these pairs?



#### Joint spectrum



 $r_{14} = 1$ ,  $\Gamma_2 = 1$ ,  $\nu_{MeV} = 1$ ,  $L_{52} = 10$ ,  $\xi = 1$  and p = 2.5 (left) or p = 3.5 (right)



#### MAGICal GRB 190114C



Chand+ (2020), ApJ, 903



# Possible collaboration?

- Proton synchrotron
- Bethe-Heitler



# Radiation mediated shocks (RMSs)

#### An efficient method for fitting radiation-mediated shocks to gamma-ray burst data: The Kompaneets RMS approximation

Filip Samuelsson,<sup>1</sup> Christoffer Lundman,<sup>2</sup> and Felix  $\operatorname{Ryde}^1$ 



# The motivation



## Prompt emission unknown

- Early studies suggested photospheric emission to be a black-body (Paczyński 1986, Goodman 1986)
- Observed spectra are generally much broader





# Gap between theory and observations

- Dissipation broadens the spectrum
- Shocks are radiation mediated
- So far, no RMS model has been fit to GRB data
- We aim to bridge that gap





# Radiation mediated shocks

- Photons interact on much larger scales: if they can mediate the shock, they will
- Photons scatter back and forth, dissipating energy
- Separation in scales makes simulations expensive
- Develop an approximative method



17



# The approximation



# The Kompaneets RMS approximation

- Fermi acceleration of in RMS converging flow  $\approx$  repeated scatterings with hot electrons
- The Kompaneets RMS approximation (KRA)





# Verification of the approximation





# The jet



# A minimal jet model

- Implementing the KRA in a minimal jet scenario
- All zones account for adiabatic cooling and thermalization





# The fit



# Time resolved spectrum GRB 150314A

- Assuming  $\Gamma=300$  one gets

$$(\beta \gamma)_{\rm u} = 1.89, \quad \theta_{\rm u} = 8.8 \times 10^{-5}, \quad \frac{n_{\gamma}}{n} = 2.0 \times 10^5$$





# Next work



# Alpha distribution from RMS





# Summary

- GRBs are unlikely accelerators of UHECRs
- Bethe-Heitler pair emission together with proton synchrotron may have been seen
- RMSs can create a wide variety of spectra behaviors in GRBs