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The strong explosion problem

- Energy is released in the center of a spherical density profile
- For power-law density profiles, there is a class of self-similar
solutions:
- Decelerating shocks (Sedov 1946; Von Neumann 1947; Taylor 1950;
Blandford and McKee 1976)
= The energy causally connected to the shock is a conserved
quantity
- Accelerating shocks (Waxman and Shvarts 1993; Sari 2006)
= The energy causally connected to the shock decreases as the
shock accelerates
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Where might we find a shock in expanding media?

- Possibly in various types of Supernovae - A central engine may
drive an additional shock into SN ejecta.

- For example, A magnatar wind in a Supernovae ejecta (Kasen and
Bildsten 2010).

- In a Neutron star merger, mass is expelled, and the central
engine can drive a wide wind creating a quasi-spherical shock.

Existing solutions
- Solutions in static media

- In expanding media - shocks driven by a continuous wind in a
shallow density profile (Chevalier 1984; Jun 1998; Suzuki and
Maeda 2017).



- A homologously expanding ejecta v = % made up of ideal gas

- with a density profile p o< t=3v=%, with a > 5, so that most of the
energy is carried by slower matter (e.g; In SN ejecta, a ~ 9 — 12)
- A Newtonian shock is forced into the expanding media by a
strong explosion

- In many cases, also applicable to a shock driven by a fast wind.




Shock propagation in static medium

- A shock forced into a density profile p oc r=¢
- Asymptotically, solutions are of the form R « R?
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In a static medium, what can | determine Definitions
from the density power law w and the shock i
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velocity? >
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the shock velocity?

> Nothing

Two velocity scales
The shock velocity and the media velocity
right ahead of the shock

= The solution is generally not self-similar.
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X The shock acceleration R >
X The shock acceleration as measured in & :
the immediate upstream %(R —Vv(R)) pox V- L
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= The relevant velocity parameter is 7 = YR
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When do we have a self-similar solution? Definitions

- In the limit of n — oo, the solution n = R/V(R)

approaches the static case >
- For constant #; If a solution with R 2
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Expanding media - Will the shock grow or decay?

Terming: Definitions

- 17> 0 - The shock is growing n = R/v(R)

- 11 < 0 - The shock is decaying >
R I
I'm going to show that: o v A‘
- If at some point the shock is growing, it A 4 y
will continue to grow and it's radius will . v <
diverge
- It at some point the shock is decaying,
it's velocity will approach a constant
and it will die out. we = w (dws = 1)
B dlogR
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Expanding media - Will the shock grow or decay?

Deriving n according to time: -
Definitions
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Expanding media - Will the shock grow or decay?

Deriving n according to time: =
Definitions

dlogn )
=(0—-1 1. _
dlogt ( n+ n=R/V(R) R
- For 7 to change a sign, it must vanish. R 5
. 1 S
"N=0 <= n=n=— 1) CATArY
1-9 A
e %
> W, v ¥
é;iéoo ...........................................
==
o< We WCZW(5WS:1)
1 B dlogR

n ~ dlogR



The self-similar solution

For every a > we, a single self-similar
solution exists

Definitions
For o — we (from above), e — oo

n = R/V(R)
For o < we, there is no self-similar

solution
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Summary so far

a < we o> we

n < mnc | shock decays (n < 0)
shock decays (n < 0) | n = | self-similar solution
n>n. | shock grows (n > 0)
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- The self-similar solution is repelling



Expanding media - simulations

Definitions

n = R/V(R)
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Expanding media - Analytic Description

- Assuming the relation in the graph is
linear, there exists a full analytic
description

Definitions

n = R/V(R)

dlog(R—v)
qlog()
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Expanding media - Analytic Description

Assuming % =a-(n—1)+b, we find that:

g(t)
- a=dwsand b= (nc —1)(0ws — 1)

The shock location:
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Expanding media - Analytic Description

dlog(R —v)
Assuming —=———~ =a-(n— 1)+ b, we find that;
€ dlog() (n—="1)
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The divergence time (for growing shocks):
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Expanding media - Analytic Description

Definitions

n = R/V(R)

dlog 1,
dlogt
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Observational Signature
(Not Really)




Expanding media - Density profile far behind the shock
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Expanding media - Breakout from finite media

- A shock enters the steep part of the .
_ . Definitions
ejecta at vo. How much energy does it

need to reach Vimaex? n = R/V(R)

. v
- For supernovae ejecta, —& ~ 5 — 20 R
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- Shocks with p oc v™%, a < wc always decay (wc ~ 8)

- Shocks with o > w¢ need a large enough initial velocity in order
not to decay

- The density profile behind the shock is altered, becoming
steeper if the shock decays, and milder if the shock grows

- Decaying shocks can still break out is they have enough energy
(Eexp ~ 10Eej)

In the paper (arXiv:2010.10543 [astro-ph.HE])

- Derivation of the self-similar solution

- Analytical description of the shock propagation

- Derivation of the density profile far behind the shock and of the
energy required for a shock breakout

- Discussion of the applicability to a shock driven by a fast wind
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