Spherical shock waves in steep density gradients of expanding media

Taya Govreen-Segal

with Ehud Nakar and Amir Levinson

February 24, 2022

Tel Aviv University

The strong explosion problem

- Energy is released in the center of a spherical density profile
- For power-law density profiles, there is a class of self-similar solutions:
	- Decelerating shocks (Sedov [1946;](#page-42-0) Von Neumann [1947;](#page-42-1) Taylor [1950;](#page-42-2) Blandford and McKee [1976\)](#page-40-0)
	- \Rightarrow The energy causally connected to the shock is a conserved quantity
		- Accelerating shocks (Waxman and Shvarts [1993;](#page-43-0) Sari [2006\)](#page-41-0)
	- \Rightarrow The energy causally connected to the shock decreases as the shock accelerates

What if we take the density profile

The strong explosion problem

What if we take the density profile and let it expand?

Motivation

Where might we find a shock in expanding media?

- Possibly in various types of Supernovae A central engine may drive an additional shock into SN ejecta.
	- For example, A magnatar wind in a Supernovae ejecta (Kasen and Bildsten [2010\)](#page-41-1).
- In a Neutron star merger, mass is expelled, and the central engine can drive a wide wind creating a quasi-spherical shock.

Existing solutions

- Solutions in static media
- In expanding media shocks driven by a continuous wind in a shallow density profile (Chevalier [1984;](#page-40-1) Jun [1998;](#page-40-2) Suzuki and Maeda [2017\)](#page-42-3).

Setup

- A homologously expanding ejecta $v = \frac{r}{t}$ *t* made up of ideal gas
- \cdot with a density profile $\rho \propto t^{-3}$ v $^{-\alpha}$, with $\alpha >$ 5, so that most of the energy is carried by slower matter (e.g; In SN ejecta, $\alpha \simeq 9 - 12$)
- A Newtonian shock is forced into the expanding media by a strong explosion
- In many cases, also applicable to a shock driven by a fast wind.

Shock propagation in static medium

- \cdot A shock forced into a density profile $\rho \propto r^{-\omega}$
- Asymptotically, solutions are of the form *R*˙ ∝ *R* δ

Shock propagation in static medium

- \cdot A shock forced into a density profile $\rho \propto r^{-\omega}$
- Asymptotically, solutions are of the form *R*˙ ∝ *R* δ

In a static medium, what can I determine from the density power law ω and the shock velocity?

⇒ The full shock evolution (except for normalization)

In a static medium, what can I determine from the density power law ω and the shock velocity?

 \Rightarrow The full shock evolution (except for normalization)

In an expanding medium, what can I determine from the density power law α and the shock velocity?

⇒ Nothing

In a static medium, what can I determine from the density power law ω and the shock velocity?

 \Rightarrow The full shock evolution (except for normalization)

In an expanding medium, what can I determine from the density power law α and the shock velocity?

⇒ Nothing

Two velocity scales

The shock velocity and the media velocity right ahead of the shock

 \Rightarrow The solution is generally not self-similar.

What determines whether the shock will diverge or die out?

The shock acceleration \ddot{R}

What determines whether the shock will diverge or die out?

✗ The shock acceleration *R*¨

What determines whether the shock will diverge or die out?

 $\boldsymbol{\mathsf{X}}$ The shock acceleration \ddot{R} The shock acceleration as measured in the immediate upstream $\frac{d}{dt}(\dot{R} - v(R))$

What determines whether the shock will diverge or die out?

✗ The shock acceleration *R*¨

R˙ *v*(*R*)

The shock acceleration as measured in the immediate upstream $\frac{d}{dt}(\dot{R} - v(R))$

The shock velocity in units of the velocity of the immediate upstream *d dt* \setminus

What determines whether the shock will diverge or die out?

✗ The shock acceleration *R*¨

v(*R*)

- ✓✗ The shock acceleration as measured in the immediate upstream $\frac{d}{dt}(\dot{R} - v(R))$
- ✓ The shock velocity in units of the velocity of the immediate upstream *d dt R*˙ \setminus

What determines whether the shock will diverge or die out?

- ✗ The shock acceleration *R*¨
- ✓✗ The shock acceleration as measured in the immediate upstream $\frac{d}{dt}(\dot{R} - v(R))$
- ✓ The shock velocity in units of the velocity of the immediate upstream *d dt R*˙ *v*(*R*) \setminus

$$
\Rightarrow
$$
 The relevant velocity parameter is $\eta = \frac{\dot{R}}{v(R)}$

When do we have a self-similar solution?

• In the limit of $\eta \to \infty$, the solution approaches the static case

When do we have a self-similar solution?

- In the limit of $\eta \to \infty$, the solution approaches the static case
- For constant η ; If a solution with constant η exists, than it is self-similar

One last definition

$$
\delta = \frac{d \log \dot{R}}{d \log R}
$$

- \cdot In self-similar solutions, δ is a constant of the solution, $\dot{R} \propto R^{\delta}$
- In the static limit, $\eta \gg 1$, $\delta = \delta_{WS}$
- \cdot Generally, δ quantifies the shock expansion rate

Definitions *R v* $\eta = R/v(R)$ *R*˙ $\rho \propto$ v^{-a}

$$
\omega_c = \omega \left(\delta_{\text{WS}} = 1 \right)
$$

One last definition

$$
\delta = \frac{d \log \dot{R}}{d \log R}
$$

- \cdot In self-similar solutions, δ is a constant of the solution, $\dot{R} \propto R^{\delta}$
- In the static limit, $\eta \gg 1$, $\delta = \delta_{WS}$
- \cdot Generally, δ quantifies the shock expansion rate

Definitions *R v* $\eta = R/v(R)$ *R*˙ $\rho \propto$ v^{-a} $\omega_c = \omega \left(\delta_{\text{WS}} = 1 \right)$ $\delta = \frac{d \log \dot{R}}{d \ln \rho}$ *d* log *R*

Terming:

- \cdot $\dot{\eta} > 0$ The shock is *growing*
- \cdot $\dot{\eta}$ < 0 The shock is **decaying**

I'm going to show that:

- If at some point the shock is *growing*, it will continue to grow and it's radius will diverge
- It at some point the shock is *decaying*, it's velocity will approach a constant and it will die out.

Definitions *R* **v** $\eta = R/v(R)$ *R*˙ $\rho \propto$ v^{-a} $\omega_c = \omega \left(\delta_{\text{WS}} = 1 \right)$ $\delta = \frac{d \log R}{d \ln R}$ *d* log *R*

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

• If $\eta \gg 1$:

$$
\frac{d \log \eta}{d \log t} \simeq (\delta_{\text{WS}} - 1)\eta \stackrel{\rightarrow}{\searrow} + \delta_{\text{WS}} > 1
$$
\n
$$
-\delta_{\text{WS}} < 1
$$

Definitions *R v* $\eta = \dot{R}/v(R)$ *R*˙ ρ ∝ *v* $-\alpha$ $\omega_c = \omega \left(\delta_{\text{WS}} = 1 \right)$ $\delta = \frac{d \log R}{d \ln R}$ *d* log *R*

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

• For $\dot{\eta}$ to change a sign, it must vanish.

$$
\cdot \quad \dot{\eta} = 0 \iff \eta = \eta_c = \frac{1}{1 - \delta}
$$

The self-similar solution

- For every $\alpha > \omega_c$, a single self-similar solution exists
- For $\alpha \to \omega_c$ (from above), $\eta_c \to \infty$
- For $\alpha < \omega_c$, there is no self-similar solution

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

 \cdot For $\dot{\eta}$ to change a sign, it must vanish. This happens only for $\alpha > \omega_c$

$$
\cdot \quad \dot{\eta} = 0 \iff \eta = \eta_c = \frac{1}{1 - \delta}
$$

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

 \cdot For $\dot{\eta}$ to change a sign, it must vanish. This happens only for $\alpha > \omega_c$

$$
\cdot \quad \dot{\eta} = 0 \iff \eta = \eta_c = \frac{1}{1 - \delta}
$$

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

• For $\dot{\eta}$ to change a sign, it must vanish. This happens only for $\alpha > \omega_c$

$$
\cdot \quad \dot{\eta} = 0 \iff \eta = \eta_c = \frac{1}{1 - \delta}
$$

Deriving η according to time:

$$
\frac{d \log \eta}{d \log t} = (\delta - 1)\eta + 1.
$$

• For $\dot{\eta}$ to change a sign, it must vanish. This happens only for $\alpha > \omega_c$

$$
\cdot \quad \dot{\eta} = 0 \iff \eta = \eta_c = \frac{1}{1 - \delta}
$$

Summary so far

• The self-similar solution is repelling

Expanding media - simulations

• Assuming the relation in the graph is linear, there exists a full analytic description

Definitions *R v* $\eta = \dot{R}/v(R)$ *R*˙ $\rho \propto$ v^{-a} $\omega_c = \omega \left(\delta_{\text{WS}} = 1 \right)$ $\delta = \frac{d \log R}{d \ln R}$ *d* log *R*

Assuming
$$
\frac{d \log(\hat{R} - v)}{d \log(t)} = a \cdot (\eta - 1) + b
$$
, we find that:
\n• $a = \delta_{WS}$ and $b = (\eta_c - 1)(\delta_{WS} - 1)$

The shock location:

$$
\frac{R}{R_i} = \begin{cases}\n\frac{t}{t_i} \left(\frac{b}{b + \left(\frac{t}{t_i}\right)^{-b} (\delta_{WS} - 1) (\eta_i - 1) \left(1 - \left(\frac{t}{t_i}\right)^{-b}\right)} \right)^{\frac{1}{\delta_{WS}-1}}, & \delta_{WS} \neq 1 \\
\frac{t}{t_i} \exp \left(\frac{\left(1 - \left(\frac{t}{t_i}\right)^{-b}\right) (\eta_i - 1)}{b} \right), & \delta_{WS} = 1\n\end{cases}
$$

Assuming
$$
\frac{d \log(\dot{R} - v)}{d \log(t)} = a \cdot (\eta - 1) + b
$$
, we find that:
\n• $a = \delta_{WS}$ and $b = (\eta_c - 1)(\delta_{WS} - 1) = \begin{cases} 0.75, & \gamma = 4/3 \\ 1, & \gamma = 5/3 \end{cases}$

The divergence time (for growing shocks):

$$
t(R \to \infty) = t_i \left(\frac{\eta_i - 1}{\eta_i - \eta_c}\right)^{\frac{1}{b}} \tag{1}
$$

And the die-out velocity (for dissipating shock)s:

$$
\lim_{t \to \infty} \dot{R} = \frac{R_i}{t_i} \begin{cases} \left(\frac{b}{b - (\delta_{\text{WS}} - 1)(\eta_i - 1)}\right)^{\frac{1}{\delta_{\text{WS}} - 1}}, & \delta_{\text{WS}} \neq 1\\ \exp\left(\frac{\eta_i - 1}{b}\right), & \delta_{\text{WS}} = 1 \end{cases}
$$
(2)

[Observational Signature](#page-36-0) [\(Not Really\)](#page-36-0)

Expanding media - Density profile far behind the shock

Defining
$$
\alpha_f = -\frac{d \log \rho_f}{d \log v_f}
$$
:

Definitions

Expanding media - Breakout from finite media

- A shock enters the steep part of the ejecta at v_0 . How much energy does it need to reach *vmax*?
- For supernovae ejecta, $\frac{V_{max}}{V_0} \simeq 5 20$

Summary

- \cdot Shocks with $\rho \propto v^{-\alpha}$, $\alpha < \omega_c$ always decay ($\omega_c \simeq 8$)
- Shocks with $\alpha > \omega_c$ need a large enough initial velocity in order not to decay
- The density profile behind the shock is altered, becoming steeper if the shock decays, and milder if the shock grows
- Decaying shocks can still break out is they have enough energy (*Eexp* ∼ 10*Eej*)

In the paper (arXiv:2010.10543 [astro-ph.HE])

- Derivation of the self-similar solution
- Analytical description of the shock propagation
- Derivation of the density profile far behind the shock and of the energy required for a shock breakout
- Discussion of the applicability to a shock driven by a fast wind

[References](#page-40-3)

- Ħ
	- Blandford, R. D. and C. F. McKee (Aug. 1976). "Fluid dynamics of relativistic blast waves". In: *Physics of Fluids* 19, pp. 1130–1138. doi: [10.1063/1.861619](https://doi.org/10.1063/1.861619).

Chevalier, R. A. (May 1984). "The interaction of Crab-like supernova remnants with their surroundings.". In: 280, pp. 797–801. doi: [10.1086/162053](https://doi.org/10.1086/162053).

Jun, Byung-Il (May 1998). "Interaction of a Pulsar Wind with the Expanding Supernova Remnant". In: 499.1, pp. 282–293. doi: [10.1086/305627](https://doi.org/10.1086/305627). arXiv: [astro-ph/9712054 \[astro-ph\]](https://arxiv.org/abs/astro-ph/9712054).

References ii

- F Kasen, Daniel and Lars Bildsten (July 2010). "Supernova Light Curves Powered by Young Magnetars". In: 717.1, pp. 245-249. poi: [10.1088/0004-637X/717/1/245](https://doi.org/10.1088/0004-637X/717/1/245). arXiv: [0911.0680](https://arxiv.org/abs/0911.0680) [\[astro-ph.HE\]](https://arxiv.org/abs/0911.0680).
- Ħ Kushnir, Doron and Eli Waxman (2010). "Closing the gap in the solutions of the strong explosion problem: An expansion of the family of second-type self-similar solutions". In: *Astrophys. J.* 723.1, pp. 10–19. issn: 15384357. doi: [10.1088/0004-637X/723/1/10](https://doi.org/10.1088/0004-637X/723/1/10).
- Sari, Re'em (Feb. 2006). "First and second type self-similar solutions of implosions and explosions containing ultrarelativistic shocks". In: *Physics of Fluids* 18.2, pp. 027106–027106. doi: [10.1063/1.2174567](https://doi.org/10.1063/1.2174567). arXiv: [astro-ph/0505174 \[astro-ph\]](https://arxiv.org/abs/astro-ph/0505174).

References iii

- Sedov, Leonid I (1946). "Propagation of strong shock waves". In: *J. Appl. Math. Mech.* 10, pp. 241–250.
- Suzuki, Akihiro and Keiichi Maeda (Apr. 2017). "Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae". In: 466.3, pp. 2633–2657. doi: [10.1093/mnras/stw3259](https://doi.org/10.1093/mnras/stw3259). arXiv: [1612.03911](https://arxiv.org/abs/1612.03911) [\[astro-ph.HE\]](https://arxiv.org/abs/1612.03911).
- Taylor, Geoffrey (Mar. 1950). "The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion". In: *Proceedings of the Royal Society of London Series A* 201.1065, pp. 159–174. doi: [10.1098/rspa.1950.0049](https://doi.org/10.1098/rspa.1950.0049).
- ■ Von Neumann, J (1947). "Blast Waves (Los Alamos Sci. Lab. Tech. Series), Vol.". In: *LI Sedov (Los Alamos, NM)*.

References iv

Naxman, Eli and Dov Shvarts (Apr. 1993). "Second-type self-similar solutions to the strong explosion problem". In: Physics of Fluids A 5.4, pp. 1035-1046. DOI: [10.1063/1.858668](https://doi.org/10.1063/1.858668).