Origin of intense electron heating in relativistic blast waves

Arno Vanthieghem

Journal Club HE (IAP) – Thursday, March 3d

Collaborators

Martin Lemoine (IAP), Laurent Gremillet (CEA) Frederico Fiuza (SLAC), Amir Levinson (Tel Aviv), Sasha Philippov (Flatiron), Jens Mahlman (Princeton), Ehud Nakar (Tel Aviv)

Mainly based on

A. Vanthieghem et al., "Origin of intense electron heating in relativistic blast waves", submitted to ApJL, 2022

A. Vanthieghem et al., "*The role of plasma instabilities in relativistic radiation mediated shocks: stability analysis and particle-in-cell simulations*", MNRAS, 2022

Multimessenger signature of GRBs are emitted in vastly different New astrophysical conditions that we need to model

Gravitational wave signal

Kinetic processes are essential to model nonthermal emission

- Collisionless shock waves
- Collisionless reconnection
- **Turbulence**
- Radiation mediated shock waves
- **…**

Kinetic description is essential to phenomenology in high-energy astrophysics

Motivations

- **Dynamics of extreme astrophysical environments**
- **Mechanisms of particle acceleration**

Motivations (and notations) Gamma Ray Burst Afterglows

Central engine

- Relativistic bulk outflow
- Free energy: electromagnetic or kinetic

 10^{16} m

Afterglow emission

Synchrotron Self Compton radiation of electrons accelerated at a relativistic shock front

Afterglow of GW170817

Dissipation along the jet ● Relativistic shocks, reconnection, turbulence etc.

Structure of a relativistic collisionless shock wave without external magnetic field

The microturbulence is generated by the interaction between the beam and the background plasma via the Weibel Instability

⇒ sustain phase-space anisotropy

The cold background plasma interacts the hot beam of accelerated particles and generates a microturbulence

Relativistic electron-ion plasmas shock waves reach equipartition in the shock downstream

Modeling of gamma-ray burst afterglows indicate equipartition between electrons and ions - Freedman+01

$$
E_e \sim E_i \Rightarrow \langle \gamma_e \rangle \sim \frac{m_i}{m_e} \langle \gamma_i \rangle \sim 10 \text{ GeV}
$$

• Equipartition observed in PIC simulations – Spitkovsky08, Martins+09, Haugbölle11, Sironi+11

What is the origin of this strong electron energization?

Vanthieghem+2022

What is the source of strong electron heating?

Probe the electron heating with large-scale ab initio N-body simulations

Different sources of electron heating in the microturbulence have been identified (Milosavljevic+2006, Gedalin+2008, Gedalin+2012 , Plotnikov+2013, Kumar+2015)

⇒ Need to build a reduced model that can disentangle them and identify a dominant source of electron heating

The pressure of the beam on the background leads to a deceleration of the background plasma across the precursor

- System composed **of background plasma** + **suprathermal particles** + **electromagnetic turbulence**
- Conservation of energy-momentum

 $\partial_{\mu} \left(T^{\mu \nu} + T^{\mu \nu}_{\text{b}} + T^{\mu \nu}_{\text{EM}} \right) = 0$

- Electromagnetic turbulence hardly contributes to the fluid conservation equations
	- ⇒ Background plasma deceleration law

Lorentz factor
$$
\gamma_p \propto \xi_b^{-1/2}
$$

with

 $\xi_b =$

$$
\boldsymbol{P}_{\boldsymbol{b}}/\boldsymbol{\mathcal{F}}_{\infty} \qquad \begin{array}{c} \boldsymbol{P}_{\boldsymbol{b}} \hspace{0.1cm} \text{- Suprathermal particle pressure} \\ \boldsymbol{\mathcal{F}}_{\infty} \hspace{0.1cm} \text{- Incoming ram pressure} \end{array}
$$

The pressure of the beam is mediated to the background by the microturbulence

Lemoine+2019a

The Weibel microturbulence is quasi-magnetostatic in a preferential frame: the Weibel frame

At each point, one can define a local reference frame R_w in which the turbulence is quasi-magnetostatic

Due to their large difference in inertia, electrons and ions have largely different dynamics in the shock precursor

- Large difference of inertia between ions and electrons in the precursor \Rightarrow background charge separation
- Electrons are strongly coupled to the microturbulence $\Rightarrow \mathcal{R}_w \sim \mathcal{R}_e$
- Ions are drifting at relativistic speed in the Weibel frame

$$
\Rightarrow \nu_i \ll \nu_e \quad (\nu : \text{scattering frequency})
$$

Build up of an electric potential in the shock precursor of the shock

Estimate of the electric potential in the shock precursor shows evidence of a coherent electric field of sufficient amplitude to explain the strong electron energization

$$
\Delta \phi \sim 0.5 \, \gamma \, m_i \sim T_e
$$

What is the nature of this electric field?

The decelerating turbulence frame introduces noninertial forces leading to nonadiabatic heating of the plasma

The decelerating turbulence frame introduces noninertial forces leading to nonadiabatic heating of the plasma

The decelerating turbulence frame introduces noninertial forces leading to nonadiabatic heating of the plasma

Microturbulence deceleration Vanthieghem+2022

The transport equation is solved using a Monte Carlo approach for turbulence and a Poisson solver for electrostatic field

How to extract the relevant physics from full PIC simulations?

⇒ Need for a reduced description accounting for the relevant physics – *i.e.*, pitch angle scattering in the turbulence frame and stationary shock

Vanthieghem+2022 **Free parameter : scattering frequency in the turbulence**

The scattering frequency can be estimated from the structure of the microturbulence

The scattering frequency is determined by the magnetization (σ) and local typical size of a scattering center (λ)

$$
\mathbf{v} \propto \boldsymbol{\sigma} \, \lambda \, f(\boldsymbol{p}) \qquad \text{with } \boldsymbol{\sigma} \sim 10^{-(2-3)}
$$

The microturbulence transitions from electron scale (d_e) in the far precursor to ion scales close to the shock (d_i)

The scattering frequency can be estimated from the structure of the microturbulence

The scattering frequency is determined by the magnetization (σ) and local typical size of a scattering center (λ)

$$
v \propto \sigma \lambda f(p) \quad \text{with } \sigma \sim 10^{-(2-3)}
$$

The microturbulence transitions from electron scale (d_e) in the far precursor to ion scales close to the shock (d_i)

Comparison between the scattering frequency estimated from kinetic simulations and by solving the transport equation (shaded area)

The electrostatic potential is essential to account for the strong electron energization

Comparison between fully kinetic simulations and Monte Carlo-(Poisson) solutions to the transport equation

Dynamics of the plasma without electrostatic potential

The electrostatic potential is essential to account for the strong electron energization

Comparison between fully kinetic simulations and Monte Carlo-(Poisson) solutions to the transport equation

pitch-angle scattering + electrostatic field

Electron heating proceeds through a Joule-like process in the decelerating microturbulence and coherent electric field

Comparison between the electric potential (from kinetic simulation) and the electrostatic potential from the Monte Carlo-Poisson solution to the transport equation

Equipartition is associated with the self-consistent generation of a coherent (along the transverse direction) longitudinal electric field across the shock precursor coupled with scattering in microturbulence

Take home message

- Strong electron energization, up to near equipartition, is observed in unmagnetizaed relativistic collisionless shock waves
- The noninertial nature of the turbulence frame and electrostatic potential lead to nonadiabatic heating in a Joulelike process
- The ions dynamics is mainly governed by the pitch angle scattering in the decelerating microturbulence
- The electrostatic field in the shock precursor of electron-ion shocks accounts for equipartition in the downstream