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AGN and GW host, BBH mergers
counterparts: follow the unexpected.
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AGN - GW connection

Detectability of a spatial correlation between stellar-mass black hole
mergers and Active Galactic Nuclei in the Local Universe
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ABSTRACT

The origin of the Binary Black Hole (BBH) mergers detected through Gravitational Waves (GWs) by the LIGO-Virgo-KAGRA
(LVK) collaboration remains debated. One fundamental reason is our ignorance of their host environment, as the typical size of
an event’s localization volume can easily contain thousands of galaxies. A strategy around this is to exploit statistical approaches
to assess the spatial correlation between these mergers and astrophysically motivated host galaxy types, such as Active Galactic
Nuclei (AGN). We use a Likelihood ratio method to infer the degree of GW-AGN connection out to z = 0.2. We simulate
BBH mergers whose components’ masses are sampled from a realistic distribution of the underlying population of Black Holes
(BHs). Localization volumes for these events are calculated assuming two different interferometric network configurations. These
correspond to the configuration of the third (O3) and of the upcoming fourth (O4) LVK observing runs. We conclude that the 13
BBH mergers detected during the third observing run at z < 0.2 are not enough to reject with a 3¢- significance the hypothesis
according to which there is no connection between GW and AGN more luminous than ~ 10*erg s~ that have number density
higher than 10~*73Mpc ™. However, 13 detections are enough to reject this no-connection hypothesis when rarer categories of
AGN are considered, with bolometric luminosities greater than ~ 10%-Serg s™!. We estimate that O4 results will potentially
allow us to test fractional contributions to the total BBH merger population from AGN of any luminosity higher than 80%.
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AGN - GW connection

Where does the high mass BBH come from?
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AGN basics

AGN gravitational capture
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(Tagawa et al. 2020)
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AGN, one of the channel of BBH mergers?

Hierarchical Black Hole Mergers in AGN
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Statistical approach

Gravitational-wave localization alone can probe origin of stellar-mass
black hole mergers
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(Veronesi et al. 2022)
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ABSTRACT

The origin of the Binary Black Hole (BBH) mergers detected through Gravitational Waves (GWs) by the LIGO-Virgo-KAGRA
(LVK) collaboration remains debated. One fundamental reason is our ignorance of their host environment, as the typical size of
an event’s localization volume can easily contain thousands of galaxies. A strategy around this is to exploit statistical approaches
ss the spatial correlation between these mergers and astrophysically motivated host galaxy types, such as Active Galactic
Nuclei (AGN). We use a Likelihood ratio method to infer the degree of GW-AGN connection out to z = 0.2. We simulate
BBH mergers whose components’ masses are sampled from a realistic distribution of the underlying population of Black Holes
(BHs). Localization volumes for these events are calculated assuming two different interferometric network configurations. These
correspond to the configuration of the third (O3) and of the upcoming fourth (O4) LVK observing runs. We conclude that the 13
BBH mergers detected during the third observing run at z < 0.2 are not enough to reject with a 30 significance the hypothesis
according to which there is no connection between GW and AGN more luminous than ~ 10***erg s™!, that have number density
higher than 10~*7Mpc ™. However, 13 detections are enough to reject this no-connection hypothesis when rarer categories of
s greater than ~ 10%-Serg s™!. We estimate that O4 results will potentially
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AGN are considered, with bolometric luminositie:

allow us to test fractional contributions to the total BBH merger population from AGN of any luminosity higher than 80%.
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Statistical approach

Correlation between Gravitational Waves 90% credibility level
localization volumes and the positions of AGN (z< 0.2)

e Two catalogues of simulated GW detection (03 and 04)
- Synthetic population of BBHs
» Power Law + Peak analytical model (Abbott et al. 2021b)
=> sample values of masses
=> uniform spin magnitude distribution between 0 and 1
- Simulate the response of the network (duty cycle, keep SNR> 8)
- Evaluation of 90% localization volumes
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Statistical approach
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Figure 1. Cumulative distributions of the 90% CL localization volumes of
simulated GW events with SNR> 8 and z < 0.2. The blue and the green
histograms are for O3 and O4 runs, respectively. The top axis shows the
expected number of AGN within the corresponding localization volume,
for a homogeneous distribution of AGN with a number density of nyg, =
10~ Mpc3.
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Statistical approach

e Minimum number of GW detections to test the AGN origin Ng‘\’N

GW not originating from an AGN, number of AGN within V;
RBi(Nacn,i) = Poiss(Nacn,i» PacnVi)

GW originating from an AGN, number of AGN within V;
F(Nacn,i) = Poiss(Nagn,i — 1, pacn Vi)

hypothesis that a fraction fugn of the detected GWs originated
from AGN

g(fagn) = |_|[fagn5’;' + (1 - fagn)gi]
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Statistical approach

Test statistic of a set of detected GWs is the likelihood ratio

Every simulation is therefore associated to a value of A that depends
on PacN » Ngw , fagn , error box of each simulated GW event, and the
number N; of AGN within such volume.

3000 simulation centered in an AGN (As), 3000 simulation randomly
distributed (Ap). no-connection hypothesis is reached when the
median value of the distribution of A corresponds to a p-value lower
than 0.00135 (30) when compared to the A, distribution.

12/26



Statistical approach
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Statistical approach
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Statistical approach
03, 13 detected BBH mergers with z < 0.2. Ngyw = 13 :
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BBH - EM counterpart

Disks Around Merging Binary Black Holes: From GW150914 to Supermassive Black Holes

Abid Khan,' Vasileios Paschalidis,>> Milton Ruiz,' and Stuart L. Shapiro'-*

lDeparl‘mem‘ of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
“Theoretical Astrophysics Program, Departments of Astronomy and Physics, University of Arizona, Tucson, AZ 85721
*Department of Physics, Princeton University, Princeton, NJ 08544
*Department of Astronomy & NCSA, University of lllinois at Urbana-Champaign, Urbana, IL 61801

‘We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning
black hole binaries with mass ratio ¢ = 29/36. We survey different disk models which differ in their scale
height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model.
Scaling our simulations to LIGO GW150914 we find that suc stems could explain possible gravitational wave
and electromagnetic counterparts such as the
ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties
such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and post-merger, disk
temperatures, thermal frequencies, and the time-delay between merger and the boost in jet outflows that we
reported in earlier studies display only modest dependence on the initial disk model we consider here.

(Khan et al. 2018)
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BBH - EM counterpart

(Khan et al. 2018) 18/26



BBH - EM counterpart

Not very convincing
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BBH - EM counterpart
AGN channel fulfilling the requirement

BH binary
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(Shu-Xu et al. 2019) 20/26



BBH - Observation strategy

expected emission?

I'embarras du choix
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v é
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(Loeb 2016) (Khan et al. 2018) (Farris et al. 2011) (Shu-Xu et al. 2019)
Gamma ray Hard X-ray IR + optic FRB

(De Mink et al. 2017)
X-ray to IR
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Offline analysis
Is a given event compatible with AGN channel?
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Offline analysis
Is a given event compatible with AGN channel?
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(Shu-Xu et al. 2019)
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Low-latency analysis
AGN flag

An analogue of em_bright

JSON Raw Data Headers

Save Copy
HasNs: 1
HasRemnant: ©.12349154987992231
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BBH - Observation strategy
AGN channel fulfilling the requirement

Galaxy-targeting = AGN targeting

Which catalog?

Identification of 1.4 Million
mangrove catalog Active Galactic Nuclei in the
Mid-Infrared using WISE Data

MIRAGH

uuuuuuuuuuuu

(Ducoin et al. 2019)

(Secrest et al. 2015)
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THANKS!
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