Fast Radio Bursts, and where to find them

FRBs as probes of cosmic Reionization

Stefan Heimersheim – 3rd year PhD student @ University of Cambridge

In collaboration with Nina Sartorio, Anastasia Fialkov & Duncan Lorimer

What it takes to Measure Reionization with Fast Radio Bursts [arXiv:2107.14242]

What are Fast Radio Bursts? (FRBs)

Parkes Radio Telescope (CC BY-SA Stephen West)

Lorimer et al. 2007 arXiv:0709.4301

High Energy Journal Club, 21st April 2022, Paris

Current and future telescopes

GBT Photo: NRAO/AUI/ NSF

(Future) SKA Photo credit: SPDO/TDP/DRAO/ Swinburne Astronomy Productions (CC BY)

(Past) Arecibo

Photo credit: Mario Roberto Durán Ortiz (CC BY-SA)

FAST Photo: Absolute Cosmos

ASKAP: SKA pathfinder, good localization → allows follow up redshift measurements. Photo credit: Ant Schinkel, CSIRO (CC BY-SA)

CHIME: Canada, HI mapping, large FOV → very good for FRBs as well Photo credit: CHIME

Stefan Heimersheim sh2061@cam.ac.uk

High Energy Journal Club, 21st April 2022, Paris

Recent FRB discoveries

Animation by Cherry Ng, CHIME, Dunlap Institute (github.com/cherryng)

Photo credit: CHIME

primary beam formed beams Figures: CHIME field of view (Kendrick Smith)

High Energy Journal Club, 21st April 2022, Paris

Repeating FRBs

A repeating fast radio burst

L. G. Spitler, P. Scholz, J. W. T. Hessels , S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva, R. D. Ferdman, P. C. C. Freire, V. M. Kaspi, P. Lazarus, R. Lynch, E. C. Madsen, M. A. McLaughlin, C. Patel, S. M. Ransom, A. Seymour, I. H. Stairs, B. W. Stappers, J. van Leeuwen & W. W. Zhu

Nature **531**, 202–205 (2016) <u>Cite this article</u>

"The Repeater" – Arecibo (2016)

A second source of repeating fast radio bursts

The CHIME/FRB Collaboration

Nature 566, 235–238 (2019) Cite this article

– CHIME (2019)

5

High Energy Journal Club, 21st April 2022, Paris

Repeating FRBs!

CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources

- Some FRBs seem to emit repeated bursts
- Are all FRBs to-be-detected "repeaters"?
- Implications for source models?

What is the origin of Fast Radio Bursts?

FRB source & mechanisms still uncertain!

		ns - Scroll right to s	ee other	columns.												
Name	Category	Progenitor	Type	Energy Mechanism	Emission Mechanism	LF Radio Counterpart	HF Radio Counterpart	Microwave Counterpart	TH2 Counterpart	OIR Counterpart	X ray Counterpart	Gamma ray Counterpart	GW Counterpart	Neutrino Counterpart	References	Comments
S-WD Accretion	Accretion	NS-WD	Repeat	Mag. reconnection	Ourk.	Yes	-	-	-		-	Yes, but unlikely detectable	-	-	URL	None
SN-KBH	ASN	AGN-KBH Interaction	Repeat	I Maser	Synch.	Yes	-	-	-	Supernova	-	Yes	Yes	Yes	URL	Neutrinos from preceding SN an from collapse to BH.
avs:	AGN	AGN-Strange Star Interaction	Repeat	tlectron		Yes	-	-	-	Thermal	-	Ves	Yes	Yes	URL	Neutrinos from preceding SN and from collapse to BH. GW from collapse and persistent GWs from SS.
t-Caviton	AGN	Jet-Caviton Interaction	Both	Electron scattering	Bremsst.	Yes	Yes	-	-	-	-	Possible GRB	Yes	-	URL • URL	Persistent scintillating radio emission.
/andering Beam	ASN	Wandering Beam	Repeat		Synch.	Yes					Yes				URL	None
S to BH (DM- duced)	Collapse	NS to BH	single	Mag. reconnection	Ourk.	Yes							Yes		URL	None
S to K248H	Collapse	NS to KNBH	Single	Mag. reconnection	Curre.	Yes	-	-	-	-	Possible afterglow	Possible GRB	Yes	-	URL - URL - URL	Possible X-ray afterglow and a short/long GRB created in NS birth prior to the FRB.
S to Quark Star	Collapse	NS to Quark Star	Single	β-decay	Synch.	Yes	-	-	-	-	Yes	Yes	Yes	-	URL	The burst is predicted to be several seconds, explainable if the de-dispersion process that stacks f
S Crust	Collapse	Strange Star Crust	t Single	Mag.	Curre.	Yes	-	-	-	-	-	-	Yes	-	URL	None
xion Cloud and H	Collision / Interaction	Superradiant Axion Cloud and BH	Repeat	t Laser	Synch.	Yes	-	-	-	-	-		Yes	-	URL	Observational counterparts could be associated with electron-positron

Sample of FRB origin theories from https://frbtheorycat.org (currently via archive.org)

Plenary 4: Source Models

Plenary 4A: Thu 29/7/2021 @ 12am - 2am UT - Chair: Vikram Ravi Plenary 4B: Thu 29/7/2021 @ 12pm - 2pm UT - Chair: Amanda Weltman

ID1: Neutron stars as sources of FRBs: from the Lorimer burst to SGR 1935 Sergei Popov, Sternberg Astronomical Institute A: Live B: Live

ID27: Accreting X-ray Binaries as FRB Sources Brian Metzger, Columbia University / Flatiron Institute A: Live B: Recording

ID44: Periodic activities of repeating fast radio bursts from Be X-ray binary systems Qiaochu LI, Nanjing University A: Recording B: Recording

ID49: Dynamical Formation Scenarios for FRB 20200120E in a Globular Cluster Kyle Kremer, Callech/Carnegie Observatories A: Live B: Recording

ID56: Dispersion and Rotation Measures from the Ejecta of Compact Binary Mergers Zhenyin Zhao, Nanjing University A: Recording B: Recording

ID64: Binary comb models for FRB 121102 Tomoki Wada, Yukawa Institute for Theoretical Physics A: Live B: Recording

Plenary 5: Emission mechanism Plenary 5A: Thu 29/7/2021 @ 8am - 10am UT - Chair: Di Li Plenary 5B: Thu 29/7/2021 @ 8om - 10pm UT - Chair: Maxim Lyutikov

ID59: Fast Radio Burst Breakouts from Magnetar Burst Fireballs Kunihito loka, Yukawa Institute for Theoretical Physics, Kyoto University A: Live B: Recording

ID68: Plasmoid ejection by Alfven waves and the fast radio bursts from SGR 1935+2154 Yajie Yuan, Flatron Institute A: Recording B: Live

ID73: Shock Powered Coherent Radio Precursors of Neutron Star Mergers Navin Sridhar, Columbia University A: Live B: Recording

ID94: A coherent curvature radiation explanation of the origin of giant pulses, high-energy counterparts and the connection between giant pulses and FRBs Alex Cooper, University of Amsterdam A: Live B: Recording

ID128: The FRB-like emission of the young energetic LMC pulsar, J0540-6919 Marisa Geyer, South African Radio Astronomy Observatory A: Live B: Recording

ID82: Emission Properties of Periodic Fast Radio Bursts from the Motion of Magnetars Dongzi Li, Caltech A: Recording B: Recording

Discussion at FRB 2021: https://sites.google.com/view/frb2021/ (talks on YouTube)

arXiv:

2008.01114

High Energy Journal Club, 21st April 2022, Paris

Magenetars as FRB sources?

Most promising currenly: **Magnetars** → "FRB" from Magnetar SGR 1935+2154

Observed by STARE2 + CHIME (**radio**), Swift Burst Alert Telescope, INTEGRAL, Konus-WIND, Insight-HXMT (**X-ray**, space)

Soft gamma-ray repeaters (SGRs), already proposed by e.g. Popov & Postnov 2007 (arXiv:0710.2006), and recently Metzger et al. 2019 (arXiv:1902.01866)

Figure 1 | **A potential mechanism for the formation of fast radio bursts.** A bright, millisecond-long burst of radio waves, known as a fast radio burst (FRB), has been detected¹⁻³ coming from a highly magnetized stellar remnant (a magnetar) in our Galaxy. The radio waves were accompanied by X-ray emissions⁴⁻⁶. One possible mechanism^{9,10} for the formation of such an FRB is that the magnetar produces a submillisecond-long flare of electrons and other charged particles, which collides with particles that had been emitted from previous flares (note that the collision occurs a great distance away from the magnetar; this distance is not shown to scale). The collision generates an outward-moving shock front, which in turn produces huge magnetic fields. Electrons gyrate around the magnetic field lines, and thereby emit a burst of radio waves. The shock wave also heats the electrons, which causes them to emit X-rays.

Amanda Weltman & Anthony Walters, Nature | Vol 587 | 5 November 2020

High Energy Journal Club, 21st April 2022, Paris

Properties of FRBs

FRB Localization (approx)

Figure: MeerTRAP, FRB & Pulsar locations (https://www.meertrap.org/science-goals/fast-radio-bursts/)

FRBs in CHIME/FRB Catalog 1 (arXiv:2106.04352)

FRB Localization (precise + redshift)

FRB	Telescope	Width	Redshift _{host}
FRB190523	DSA-10	0.42	0.66
FRB190711	ASKAP	6.5	0.522
FRB181112	ASKAP	2.1	0.4755
FRB190611	ASKAP	2	0.378
FRB180924	ASKAP	1.3	0.3214
FRB190102	ASKAP	1.7	0.291
FRB121102	arecibo	3	0.19273
FRB190608	ASKAP	6	0.1178
FRB180916.J015	8+65 CHIME/FRB	0.87	0.0337

FRB 180924 by ASKAP, follow-up by VLT (arXiv:1906.11476)

Zoomed g-band

FRB 180916 by CHIME, follow-up with Europ. VLBI Net. (arXiv:2001.02222)

Stefan Heimersheim sh2061@cam.ac.uk

All localized FRBs from https://www.frbcat.org/

High Energy Journal Club, 21st April 2022, Paris

Follow-up & localization within a galaxy

Mannings et al. 2021 (arXiv:2012.11617)

Bhandari et al. 2020 (arXiv:2005.13160)

High Energy Journal Club, 21st April 2022, Paris

Instruments for localizations

Plenary 8: Pinpointing

Plenary 8A: Tue 3/8/2021 @ 8am - 10am UT - Chair: Ben Stappers Plenary 8B: Tue 3/8/2021 @ 8pm - 10pm UT - Chair: Wenbin Lu

ID62: Localizing FRBs to miliarcseconds with EVN-PRECISE Benito Marcote, Joint Institute for VLBI ERIC (JIVE) A: Live B: Recording

ID84: Localization of CHIME/FRB repeaters with VLA/realfast Shriharsh Tendulkar, Tata Institute of Fundamental Research and the National Centre for Radio Astrophysics A: Live B: Recording

ID88: The first sub-arcsecond localised FRB with MeerKAT Laura Driessen, Jodrell Bank Centre for Astrophysics, University of Manchester A: Live B: Recording

ID89: The UTMOST-2D FRB detection and localisation engine Adam Deller, Swinburne University of Technology A: Live B: Recording

ID140: Arcsecond Localization of FRB 20201124A with the uGMRT Robert Wharton, Jet Propulsion Laboratory A: Recording B: Live

ID108: <u>CHIME/FRB Outriggers and CHORD</u>: new instruments for localization of Fast Radio -Bursts Juan Mena-Parra, Massachusetts Institute of Technology A: Recording B: Recording

CHIME Ourtiggers. Juan Mena-Parra, FRB2021 (8A)

CHORD (Vanderlinde et al. 2020, arXiv:1911.01777)

Stefan Heimersheim sh2061@cam.ac.uk

High Energy Journal Club, 21st April 2022, Paris

Typical properties

Bochenek et al. 2020 arXiv:2005.10828

• Dispersion ~ seconds

Signal shapes

Downward-drifting substructure ("sad trombone") CHIME/FRB Collaboration, arXiv:1908.03507

High Energy Journal Club, 21st April 2022, Paris

Repeaters – A distinct population?

478201807777A 6421 (1994) 1094

CHIME/FRB CATALOG 1

non-repeaters

CHIME/FRB COLLABORATION: M. AMIRI, et al.

repeaters

CHIME/FRB Collaboration 2021, arXiv:2106.04352

High Energy Journal Club, 21st April 2022, Paris

Repeaters – A distinct population?

Figure 3. Histogram of repeating and non-repeating FRBs for radio luminosity expressed logarithmically. The solid line is the

Figures from Cui et al. 2021 (arXiv:2011.01339)

High Energy Journal Club, 21st April 2022, Paris

Stefan Heimersheim sh2061@cam.ac.uk

Cosmology with FRBs

The FRB Dispersion Measure

$$\mathrm{DM} = \int \frac{n_e}{1+z} \,\mathrm{d}l$$

Dispersion Measure Contributions

Image: BG - NASA; FG - ESA; B. Holwerda; Illingworth, Oesch, Bouwens and the HUDF09 Team Figure: MeerTRAP, FRB & Pulsar locations (https://www.meertrap.org/science-goals/fast-radio-bursts/)

Milky Way – from 10 to 3000 pc/cm³ but known from model:

Stefan Heimersheim sh2061@cam.ac.uk

20

High Energy Journal Club, 21st April 2022, Paris

Dispersion Measure Contributions

Image: BG - NASA; FG - ESA; B. Holwerda; Illingworth, Oesch, Bouwens and the HUDF09 Team Figure: MeerTRAP, FRB & Pulsar locations (https://www.meertrap.org/science-goals/fast-radio-bursts/)

Milky Way – from 10 to 3000 pc/cm³ but known from model: Host galaxy – unknown ~ 200 +/- 100 pc/cm³

21

High Energy Journal Club, 21st April 2022, Paris

Dispersion Measure Contributions

Image: BG - NASA; FG - ESA; B. Holwerda; Illingworth, Oesch, Bouwens and the HUDF09 Team Figure: MeerTRAP, FRB & Pulsar locations (https://www.meertrap.org/science-goals/fast-radio-bursts/)

Milky Way – from 10 to 3000 pc/cm³ but known from model: Host galaxy – unknown ~ 200 +/- 100 pc/cm³

Intergalactic medium – depending on the distance, and ionization of the IGM along the line of sight

$$DM(z)^{\text{IGM}} = \int_{\text{earth}}^{\text{source}} \frac{n_e^{\text{IGM}}(z)}{(1+z)} dl$$

~ 4000 - 6000 pc/cm³ ± 5-9%

(for z=5 to 15)

Stefan Heimersheim sh2061@cam.ac.uk

High Energy Journal Club, 21st April 2022, Paris

Cosmology with FRBs

Stefan Heimersheim sh2061@cam.ac.uk

FRB (angular) clustering

FRBs in CHIME/FRB Catalog 1 (arXiv:2106.04352)

- Location (approximate, or accurate from interferometry)
- Redshift (approximate from DM, or accurate from follow-up)

multipole l

Shirasaki et al. 2017 (arXiv:1702.07085) see also Dai & Xia 2021 (arXiv:2004.11276)

FRB DM statistics

Stefan Heimersheim sh2061@cam.ac.uk

2

4

6

5000

 1^{1} DM/10³ [pc cm⁻³]

6000

8

10

5500

 $DM [pc cm^{-3}]$

High Energy Journal Club, 21st April 2022, Paris

FRB DM(z) relation

Effects on DM(z)

High Energy Journal Club, 21st April 2022, Paris

sh2061@cam.ac.uk

Cosmic reionization

Cosmological standard model (Planck analysis incl. BAO):

 $\ln A_{s} \pm 0.5\%$ $n_{s} \pm 0.4\%$ $\Omega_{m}h^{2} \pm 0.6\%$ $\Omega_{b}h^{2} \pm 0.6\%$ $H_{0} \pm 0.6\%^{*}$ $\tau \pm 12\%$

Image credit: Nicolas Laporte

High Energy Journal Club, 21st April 2022, Paris

Cosmic reionization

Image credit: Nicolas Laporte

Reminder: We will have many FRBs in the future!

CHIME Ourtiggers. Juan Mena-Parra, FRB2021 (8A)

FRBs to be detected with the SKA

High Energy Journal Club, 21st April 2022, Paris

How to we currently measure Reionization from FRBs

High Energy Journal Club, 21st April 2022, Paris

Stefan Heimersheim sh2061@cam.ac.uk

How to we currently measure Reionization from FRBs

High Energy Journal Club, 21st April 2022, Paris

How to we currently measure Reionization from FRBs

Problem: Assuming a model \rightarrow Wrong result if model \neq reality

E.g. the standard *tanh* step function reionization underestimates τ by 10% $\tau_{\rm tanh} = 0.052 \pm 0.002$ for $\tau_{\rm true} = 0.057 \ (1,000 \ {\rm FRBs})$

High Energy Journal Club, 21st April 2022, Paris

Stefan Heimersheim sh2061@cam.ac.uk

25

Need a new approach – model-independent!

How to "free-form" parameterize a function?

35

High Energy Journal Club, 21st April 2022, Paris

FlexKnot parameterization

Coordinates (x,z) of interpolation knots as parameters

Basically, knots can move around and adjust to the data

FlexKnot Reionization history

37

High Energy Journal Club, 21st April 2022, Paris

FlexKnot – How many knots do we need?

High Energy Journal Club, 21st April 2022, Paris

FlexKnot – How many knots do we need?

too simple?

fits well?

too many params?

High Energy Journal Club, 21st April 2022, Paris

Stefan Heimersheim sh2061@cam.ac.uk

FlexKnot – How many knots do we need?

> Marginalize over number of knots (→ Evidence)

High Energy Journal Club, 21st April 2022, Paris

40

Concrete forecasts!

High Energy Journal Club, 21st April 2022, Paris

Measurement uncertainties

42

High Energy Journal Club, 21st April 2022, Paris

High Energy Journal Club, 21st April 2022, Paris

Stefan Heimersheim sh2061@cam.ac.uk

High Energy Journal Club, 21st April 2022, Paris

Stefan Heimersheim sh2061@cam.ac.uk

45

High Energy Journal Club, 21st April 2022, Paris

Optical depth constraint

46

Key point: Reionization model*marginalized* ("independent"), i.e. averaged over all reionization models.

High Energy Journal Club, 21st April 2022, Paris

Degeneracies

Changing z_{reio}

48

High Energy Journal Club, 21st April 2022, Paris

Summary

• FRBs originate from cosmological distances \rightarrow new probe of the high-z Universe

Lookback Time [Gvr

- This is just the beginning: New instruments \rightarrow More FRBs
- Many open questions: Origin, Mechanism, Repeaters
- Cosmology with Dispersion Measure: H₀, Reionization and more
- Use model-independent parameterizations of functions → applicable everywhere!

GBT Atentio ASKAP UINOST

Stefan Heimersheim sh2061@cam.ac.uk

High Energy Journal Club, 21st April 2022, Paris