GRB 211211A

Clément Pellouin – High-Energy Journal Club – 12 May 2022

A Kilonova Following a Long-Duration Gamma-Ray Burst at 350 Mpc 2204.10864

Jillian Rastinejad^{1*}, Benjamin P. Gompertz², Andrew J. Levan³, Wen-fai Fong¹, Matt Nicholl², Gavin P.
Lamb⁴, Daniele B. Malesani^{3,5,6}, Anya E. Nugent¹, Samantha R. Oates², Nial R. Tanvir⁴, Antonio de Ugarte Postigo⁷, Charles D. Kilpatrick¹, Christopher J. Moore², Brian D. Metzger^{8,9}, Maria Edvige Ravasio^{3,10}, Andrea Rossi, Genevieve Schroeder¹, Jacob Jencson¹², David J. Sand¹², Nathan Smith¹², José Feliciano Agüí Fernández¹³, Edo Berger¹⁴, Peter K. Blanchard¹, Ryan Chornock¹⁵, Bethany E. Cobb¹⁶, Massimiliano De Pasquale¹⁷, Johan P. U. Fynbo^{5,6}, Luca Izzo¹⁸, D. Alexander Kann¹³, Tanmoy Laskar³, Ester Marini¹⁹, Kerry Paterson^{1,20}, Alicia Rouco Escorial¹, Huei M. Sears¹ and Christina C. Thöne²¹

GRB 211211A: prolonged central engine under strong magnetic field environment

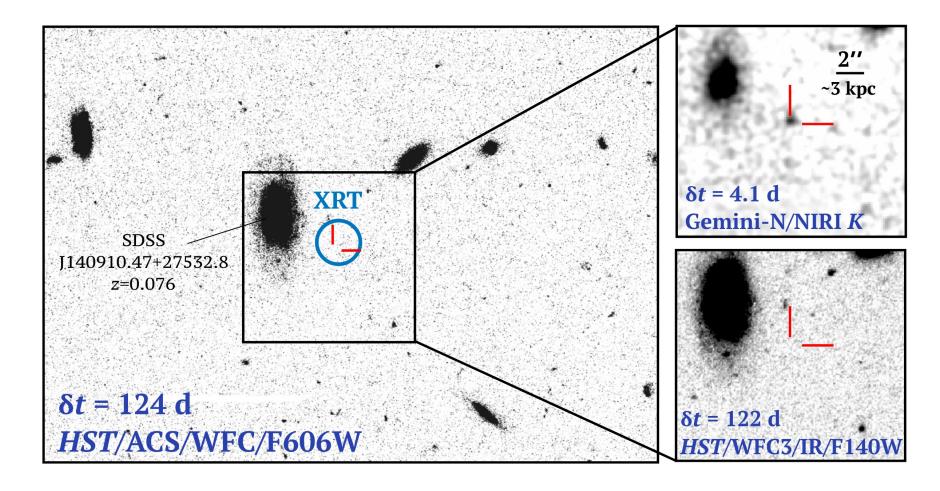
HE GAO,¹ WEI-HUA LEI,² AND ZI-PEI ZHU^{2, 3}

2205.05031

A minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission

2205.05008

Benjamin P. Gompertz^{1*}, Maria Edvige Ravasio^{2,3}, Matt Nicholl¹, Andrew J. Levan², Brian D. Metzger^{4,5}, Samantha R. Oates¹, Gavin P. Lamb⁶, Wen-fai Fong⁷, Daniele B.
Malesani^{2,8}, Jillian C. Rastinejad⁷, Nial R. Tanvir⁶, Philip A. Evans⁶, Peter G. Jonker^{2,9}, Kim L. Page⁶ and Asaf Pe'er¹⁰


A peculiarly long-duration gamma-ray burst from binary neutron star merger

JUN YANG,^{1,2} BIN-BIN ZHANG,^{1,2} SHUNKE AI,^{3,4} ZI-KE LIU,^{1,2} XIANGYU IVY WANG,^{1,2} YE LI,⁵ HOU-JUN LÜ,⁶ AND BING ZHANG^{3,4} 2204.12771

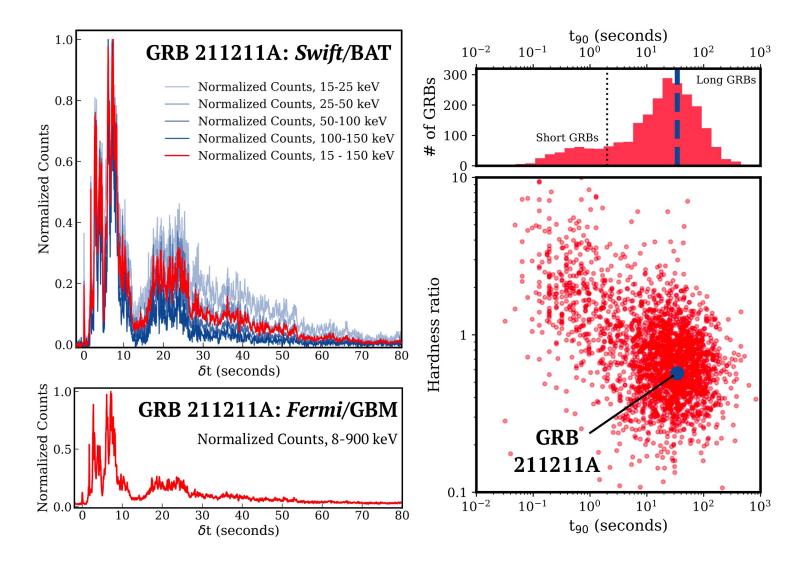
The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger

Shuo Xiao^{1,2}, Yan-Qiu Zhang^{1,2}, Zi-Pei Zhu^{3,4}, Shao-Lin Xiong^{1*}, He Gao^{5*}, Dong Xu^{3*}, Shuang-Nan Zhang^{1*}, Wen-Xi Peng¹, Xiao-Bo Li¹, Peng Zhang⁶, Fang-Jun Lu¹, Lin Lin⁵, Liang-Duan Liu⁷, Zhen Zhang¹, Ming-Yu Ge¹, You-Li Tuo¹, Wang-Chen Xue^{1,2}, Shao-Yu Fu³, Xing Liu^{3,8}, An Li⁵, Tian-Cong Wang⁵, Chao Zheng^{1,2}, Yue Wang¹, Shuai-Qing Jiang³, Jin-Da Li⁵, Jia-Cong Liu^{1,2}, Zhou-Jian Cao⁵, Ce Cai^{1,2}, Qi-Bin Yi^{1,9}, Yi Zhao^{1,5}, Sheng-Lun Xie^{1,7}, Cheng-Kui Li¹, Qi Luo^{1,2}, Jin-Yuan Liao¹, Li-Ming Song¹, Shu Zhang¹, Jin-Lu Qu¹, Cong-Zhan Liu¹, Xu-Fang Li¹, Yu-Peng Xu¹, Ti-Pei Li^{1,2,10}

Host galaxy identification

SDSS J140910.47+27532.8

D ~ 350Mpc (z = 0.076)

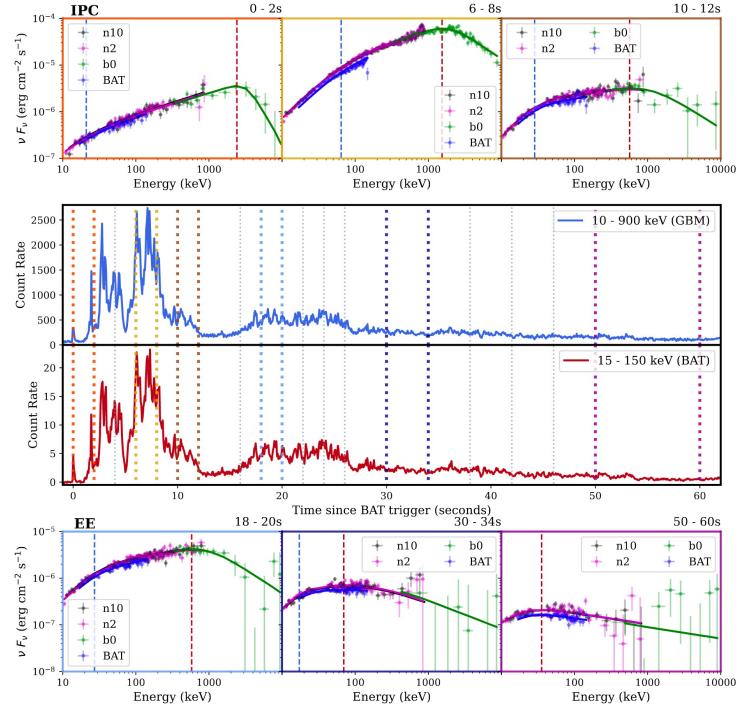

Source offset: 7.9 kpc

No source at the position of the optical afterglow to F606W > 27.76 mag and F140W > 27.19 AB mag.

 \rightarrow

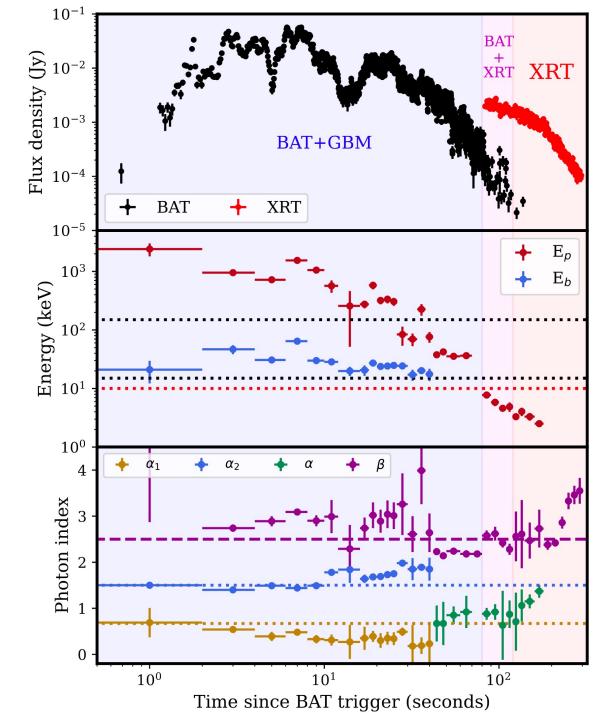
No galaxy brighter than 1% L* at this location for z < 1.4

Prompt emission



- $T_{90} = 51s$
- Typical IGRB hardness ratio
- Several overlapping pulses
- Softer extended emission

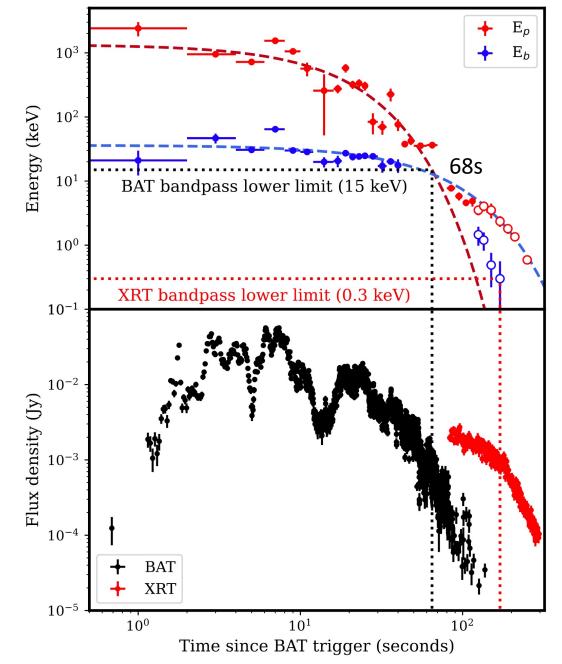
→ Much longer duration than usually searched for EE-GRB


Spectral evolution

Double Smoothly Broken Power Law (2SBPL) favored over Band or Band+thermal

Spectral evolution

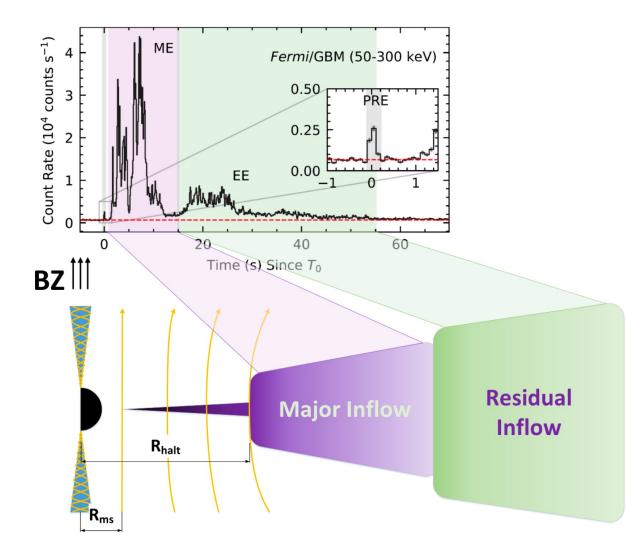
2SBPL until 42s E_b unresolved afterwards: $E_b \approx E_p$ After 120s, a rises \rightarrow Eb and Ep drift apart again

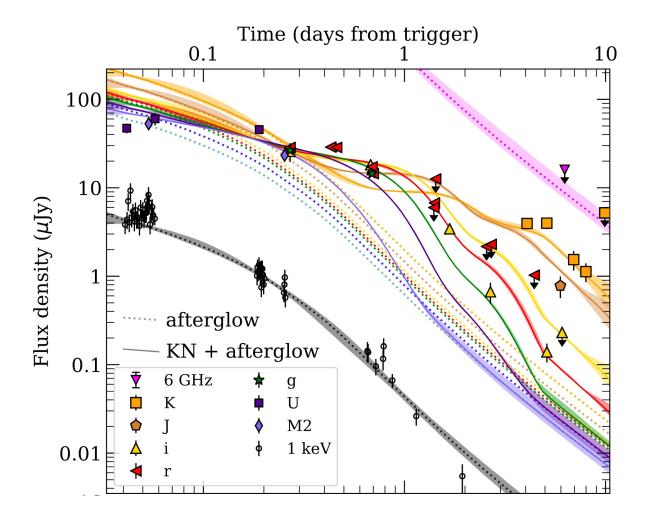


Spectral evolution

• A transition from fast to slow cooling?

« The characteristic timescale for the evolution of vc (τ Eb = 63.3 ± 20.2 s) and the turnover of the X-rays (τ X = 66.9 ± 1.0 s) are close to the fast-to-slow cooling transition time (tc ≈ 68 s) suggesting a connection between the cooling transition and the EE duration. »


« The characteristic timescale of vm (τ Ep = 14.4 ± 1.14 s) is well matched to the duration of the IPC (~ 12 s). This likely relates to the duration of the jet, which energises the shock during the IPC, keeping vm consistently high. »


Other results from spectral analysis

- B = 20 300 G (similar to marginally fast-cooling collapsar GRBs, but at odds with typical GRB emitting region)
- UVOT data at 263s below synchrotron extrapolation (due to selfabsorption?)
- EE from a magnetar remnant?

Explaining the burst shape with strong magnetic fields

Afterglow fitting

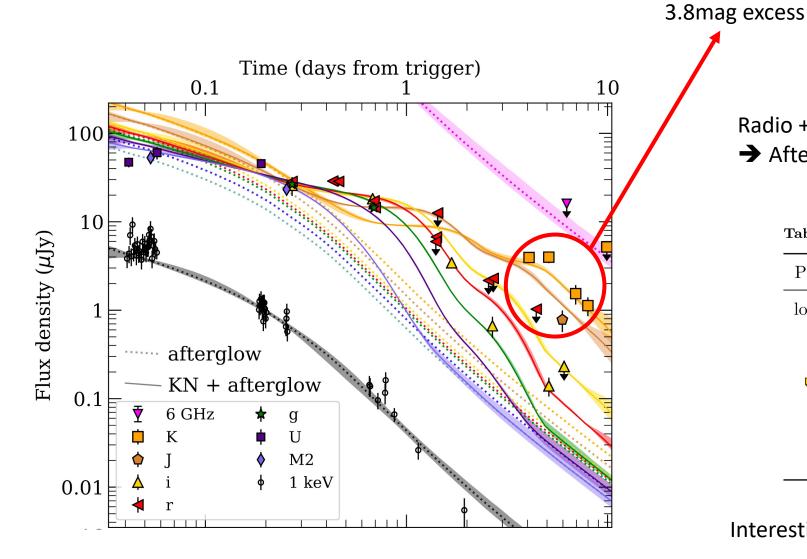

Radio + X-ray + t < 0.1day UV/optical/NIR data → Afterglow fit

 Table 3
 Afterglow Modeling Parameters

Parameter	Median	Units
$\log(E_{\rm K,iso})$	$52.6^{+0.96}_{-1.01}$	erg
Γ_0	$165.7^{+156.9}_{-96.6}$	
p	$2.015^{+0.009}_{-0.004}$	-
	$1.09\substack{+1.03 \\ -0.74}$	\deg
$\log(n)$	$0.065^{+1.421}_{-2.281}$	cm^{-3}
$ heta_c$	$3.27^{+3.90}_{-2.29}$	\deg
$\log(\varepsilon_e)$	$-1.40^{+0.66}_{-1.04}$	
$\log(\epsilon_B)$	$-3.64^{+1.34}_{-1.29}$	

Interestingly very similar to AT2017gfo!

Afterglow fitting

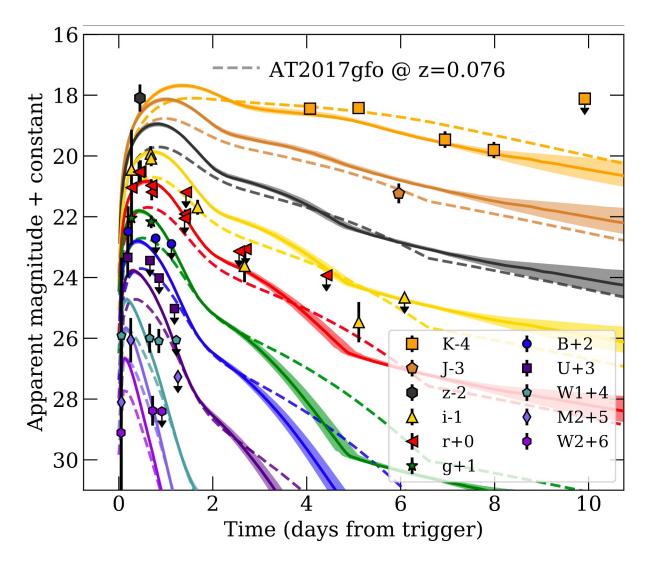

Radio + X-ray + t < 0.1day UV/optical/NIR data → Afterglow fit

 Table 3
 Afterglow Modeling Parameters

Parameter	Median	Units
$\log(E_{\rm K,iso})$	$52.6^{+0.96}_{-1.01}$	erg
Γ_0	$165.7^{+156.9}_{-96.6}$	
p	$2.015^{+0.009}_{-0.004}$	1
	$1.09^{+1.03}_{-0.74}$	deg
$\log(n)$	$0.065^{+1.421}_{-2.281}$	cm^{-3}
$ heta_c$	$3.27^{+3.90}_{-2.29}$	\deg
$\log(\varepsilon_e)$	$-1.40^{+0.66}_{-1.04}$	
$\log(\epsilon_B)$	$-3.64^{+1.34}_{-1.29}$	

Interestingly very similar to AT2017gfo!

Kilonova modelling

- Substract afterglow prediction
- 3-zones KN model
- M_{ej} = 0.04 M_{sun}
 - 0.03 M_{sun} red (v ≈ 0.3c) → dynamical tides
 - 0.01 M_{sun} purple (v \approx 0.1c) \rightarrow disc wind
 - Solvent Solvent

Consistent with $1.4M_{sun} + 1.3M_{sun}$ system, but at t < 1 day, may require late GRB jet heating

A IGRB with a kilonova??

- Very good kilonova fit
- Exponential decline in X-rays at a few hundred seconds: notable feature of EE-SGRBs
- 4-13ms spectral lag between soft & hard BAT bands more consistent with sGRB (contradict the IGRB lag-luminosity relation)
- Galactic mass & SFR more consistent with sGRB hosts
- Source offset + no stellar component
- Test of the possibility of a Ni-powered event, but i-band upper limit rules out classical scenarios

So why an extended emission?

- Relativistic wind imparted by a magnetar remnant?
- NSBH system? (but hard to have enough blue ejecta at early times)
- Asymmetric BNS? (same issue)

Conclusions

- BNS merger rate from sGRBs may underestimate the true population
- \gtrsim 10% of IGRBs from BNS mergers?
- With O4 sensitivity, $SNR_{LIGO} = 7.4$; O5: $SNR_{LIGO} = 13.7$