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Outline

Gravitational Waves (GWs) and LIGO-Virgo-KAGRA (LVK) collaboration
* Quick recap about GWs

* Introduction to LVK: detector network and main analyses

* Milestones in GW astronomy and future observing runs

Stochastic Gravitational-Wave Background: Introduction and LVK searches
e SGWB: definition and sources
e LVK searches: cross-correlation method

Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity
* Motivations and signal model
e Search for isotropic SGWB from Galactic NSs and implication for NS ellipticity

If time will allow (backup slides)
e Directional searches, SGWB from extragalactic NSs “hotspots”
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What are Gravitational Waves?
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Linearisation 1 Wave equation!
I = Muwv + by = — = What is oscillating?
|| « 1 -

From Theory GWs as spacetime ripples
that propagate at the

prediction i speed of light
1916
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How are GWs detected?
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oeneration ground based detectors network
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KAGRA, Kamioka, Japan (2020)
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https://www.esa.int/About_Us/ESAC/ESA_congratulations_on_gravitational_wave_discovery

Detector response to GWs
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Simplified Michelson Inteferometer
acting as GWs detector.
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What kind of searches are

performed?
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Timeline and future plans

16th _June 2022
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What happened during the
first three observing runs?




GWTC: Gravitational Waves Transient Catalog - 3

+ 3 GW detection during O1
 First direct detection of GW

+ From coalescing binary systems
of black holes

» 8 GW detection during O2

+ 1 coalescing binary
system of neutron stars:
electromagnetic
counterpart detected

Fm- 02 o3afo3b o
| | | |

2015 2016 2017 2018 2019

il O®

» 79 GW detection during O3 181112607
2108.01045
+ 44 during O3a, including 1 confirmed 2111.03606

binary system of neutron stars

+ 35 during O3Db, including 2 confirmed
systems of neutron stars - black holes

+ No electromagnetic counterpart + O4 to start

+ Duration:
1 year
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2020 2021 2022 2023

90 GW Coalescence 1 multimessenger Mass range Distance range
detections of black holes event (GW + EM 1.2 - 107 Mo 40 Mpc = 8 Gpc
reported and neutron stars observation) (stellar) (z— 1.14)

end of 2022

Leila Haegel for the LVK collaboration [2022]

20



Solar Masses

Masses in the Stellar Graveyard
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https://ligo.northwestern.edu/media/mass-plot/index.html
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Gravitational-Wave Transient Catalog

Detections from 2015-2020 of compact binaries with black holes & neutron stars
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SYMPHONY OF THE UNIVERSE!
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Isolated neutron stars,

magnetars ...




CosmicC GWB:

Souyces/mechanisms . -
| - First Order Phase Transition [N

P O

Primordial Black Holes

' ' \
\ Slow-Roll Inflation

a1 .




“Textboook”’
definition

What is a SGWB? - Definition

A gravitational-wave signal produced by a large number ofindependent and
Depend on details of

tatisticall the observation Not decomp(')sal.ol.e Into
statistically separate and individually
detectable sources

)sources.

Characterizable only
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What is a SGWB? - Definition

“Textboook”’ o . _
( _ )
definition A raV|tat|onaI wave signal produced by a large number ofmdependent and sources.

Depend on details of _
the observation Not decomposable into

statistically separate and individually
detectable sources

Plane wave expansion ® N P ~
wave xp: = | af [ @0 hap(f mezmiresno = > alf e ()

A= +,X
RANDOM VARIABLES
lFuIIy characterized by

Characterizable only

Statistical momenta

(hab (t, z)% (hab (t, }) hcd (tll })’)% <hab (t, Y) th (t, , },) hef (t”r }),,)),
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What is a SGWB? - Definition

“Textboook”’ o . _
( _ )
definition A raV|tat|onaI wave signal produced by a large number ofmdependent and sources.

Depend on details of _
the observation Not decomposable into

statistically separate and individually
detectable sources

Plane wave expansion ® N P ~
wave xp: = | af [ @0 hap(f mezmiresno = > alf e ()

A= +,X
RANDOM VARIABLES
lFuIIy characterized by

Characterizable only

Statistical momenta

(hab (t, })% (hab (t, Y) hcd (tll })’)% <hab (t, Y) th (t, , },) hef (t”r }),,)),

Standard

X n P Fully characterized b
hypothesis (hap(t,X)) = 0= (hy(f,n)) =0 + Gaussianity - y y

the 2-points correlator!
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What is a SGWRB? — Quantities of interest

1 fmax
Energy density _
ratio for GW Qew = jf=0 Qgw (f) df




What is a SGWRB? — Quantities of interest

f dng BHg Critical
() (f) = (f)) Pc = c—~ nsi
Energy density Q _ ffmaxﬂ () df __ GW Energy gw p. df C ™ g density
ratio for GW Gw =0 gw I density ~ (hij(t; Y) hij (t, Y» - meax dPgw ]
Pow = 321G N Tt

J

Characteristic

2 2
strain amplitude Qqw(f) = 3:]2 fAhE(), he(f) =V Sn(f)
0




What is a SGWRB? — Quantities of interest

Energy density Q _
ratio for GW GW —

fmax

f=0

~ GW Energy

Qgw () df

Gaussian, stationary,

unpolarized, isotropic <h:1 (f , ) hy (f \n')) =

background

Related to quantities closer

to the detector

Related to

density

Characteristic
strain amplitude

f dpgw BHg Critical

.ng(f) = ,0_ df (f): Pc = % density

- (hij (£, %) hij (£, %)) meax £ 2w
oW 321G o L df

af

|

2 2
U () = S 2R, he(D) = VFSi(P)
0

Spacial homogeneity

Stationarity and isotropy

0

Unpolarized

One-sided GW strain power spectral density

(summed over polarizations and integrated

over the sky) 45




.............................................

’ supernovas
! + bar modes

T T LN B B | T T T
magnetars _ BH ringdown

t .
EOS >
.-"'-..--.

5

Frequency

S —

core GD”;?IDS
toBH
Regimbau T., 2011
10°
(Hz)

alIGD Of

Indiract Limils

x*
Pulsar
Lirmil

iff

A,

Cosmic
Sfirngs

Sathyaprakash

[rans, Slow-Rall Inflation

107° +
107"
=S
Astrophysical SGWB Ci
to NS
107'°
10°
108 -
0
Cosmological SGWB . 0"
and sensitivities of the = .,
experiments
[V
'||::I 16 L 1 |
10 107 107"

10'-12

107 10°®
Freauency (Hz)

! . . ]

.,  BS.etal, 2019



https://arxiv.org/pdf/1903.09260.pdf
https://iopscience.iop.org/article/10.1088/1674-4527/11/4/001/pdf

/_— \
How to search for a SGWB

with ground-based detectors?




Basic idea of the cross-correlation search

Answer to the question:
““How to deal with the fact that SGWB is indistinguishable from unidentified instrumental noise in a single detector?”’

m  Noise ny(t)
m  Noise n/(t)
m  Signal hgauss(t)

0 500 1000 1500 2000 2500 3000 3500
Time [s]
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Basic idea of the cross-correlation search

Answer to the question:
““How to deal with the fact that SGWB is indistinguishable from unidentified instrumental noise in a single detector?”

Cross-correlation statistic

2 different detectorsdata d; = h + nq, d, = h+n,
Cross-correlated (

a 0 0 Non-zero, in general (e.g.
(Ciz) = (addy) = (B2) + ) + () + (ama) = (2) + (g scrumon esonance) e
distinguishable from SGWB




Basic idea of the cross-correlation search

Answer to the question:
““How to deal with the fact that SGWB is indistinguishable from unidentified instrumental noise in a single detector?”

Cross-correlation statistic

2 different detectorsdata d; = h + nq, d, = h+n,

Cross-correlated

a 0 0 Non-zero, in general (e.g.
(Ciz) = (addy) = (B2) + ) + () + (ama) = (2) + (g scrumon esonance) e
distinguishable from SGWB

Moreover, assuming uncorrelated noise (nyn,)=0

It simplifies to . .
Cross-correlation as estimator of

the GW power spectral density

> <é12> = (h?) =S,

Caveat: This is a very basic example (co-aligned, co-located, identical detectors); things get
much more complicated in practice (detector geometry, discrete sampling, discrete frequency,
multiple data samples, multiple detectors, different properties of the SGWB)!!!




Detector response and geometry

Detector acts like a linear filter on the GW signal, due to its weakness.

This translates in l

h(t) — (F * h)(t; 75)) = f de d3yhab (t — TJC) — 5’)) Convolution in time domain

Detector impulse response



Detector response and geometry

Detector acts like a linear filter on the GW signal, due to its weakness.

This translates in

\ 4

h(t) = (F x h)(t, %) = j drj d3yhab(t —T,X—Y) Convolution in time domain

Detector impulse response

Plane wave expansion +
Fourier transform
(polarization basis)

v

R(f) = j P20 F (F, ) hy (F ) > j 420, z@hA(f, ) Frequency domain
A

FA(f, ) = FO(f, f)ed, ()

A 4

gl F= JIF (R + I RI2

x i’
| Antenna beam patterns
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Antenna Response function at UTC 2022-01-18 12:00:00.000 for H1-L1 baseline

-0.94338 0.0512001 Credits: Jishnu Suresh




Detector response and geometry

Detector acts like a linear filter on the GW signal, due to its weakness.

This translates in

co v
h(t) — (F * h) (t; 75)) = f de d3yhab (t — TJC) — 5;) Convolution in time domain
- Detector impulse response

Plane wave expansion +
Fourier transform

v

RO = | d0aF (f, ey (f D)= | 20 ) FAG A (F, ) Frequency domain
A

FA(f, 7)) = F®(f, R)ed, ()

A 4

F= \/|F+(f,ﬁ)|2 + |FX(f, 7)|2

Antenna beam patterns

n - ~ - - 1
(€)= (GOEE) = FPRE) = 350 ~ IS

Overlap reduction function



The overlap reduction function: definitions

ORF: Geometrical factor that quantifies the reduction in
sensitivity of the cross-correlation to a SGWB due to the
non-trivial response of the two detectors and their
separation and orientation relative to one another.

1
() = 5 [ 20

A

Antenna pattern = non-trivial
response of single detectprs

Relative separation and orientation
of the two detectors




The overlap reduction function: definitions

ORF: Geometrical factor that quantifies the reduction in
sensitivity of the cross-correlation to a SGWB due to the I, (f) = if d2 0
non-trivial response of the two detectors and their J 8m n -

separation and orientation relative to one another.

Antenna pattern = non-trivial

response of single detectprs

Suitable
normalization

Relative separation and orientation
of the two detectors

v

5
vy (f) = mru(f) vy (0) =1

Opening angle Co-located, co-coaligned,
between the two arms identical detectors
Normalized ORF for two
identical equal-arm Michelson
interferometers



The overlap reduction function: definitions

ORF: Geometrical factor that quantifies the reduction in

sensitivity of the cross-correlation to a SGWB due to the I, (f) = if d2 0
non-trivial response of the two detectors and their J 8m n -

separation and orientation relative to one another.

Antenna pattern = non-trivial

0.4 response of single detectprs

Suitable
normalization

Relative separation and orientation
of the two detectors

v

5
vy (f) = mrlj(f) yy0) =1

-0.2
eyl
g e
-0.4 Opening angle Co-located, co-coaligned,
os between the two arms identical detectors
Normalized ORF for two
-0.8 AR N identical equal-arm Michelson
) 0 1 O N S A E N I B interferometers
10° 10" 10° 10°
f (Hz)

* < 0duetoH-L arms rotated 90° with respect to one another

vy (0) = —0.89 Why? * Less than unity: 27.2° between the detectors planes as seen from the Earth center

* First zero at 60 Hz, close to c/(2s) = 50 Hz, s = 3000 Km




The isotropic search: optimal filtering (1)

earching for a 3 H? Q, a=3 342 1 a-3
Searchine | Sp(f) === (f) E@Sa(f), S,(f) = Ho <f)

power-law model 2172 fr3ef fref 2772 fr3ef fref




The isotropic search: optimal filtering (1)

earching for a 3HZ Q, =3 342 1 a-3
S hing f Sy (f) = 0 (f) E@Sa(f), S.(f) = 0 <f)

power-law model 2172 fr3ef fref 2772 fr3ef fref

Get an estimator for
Q, through
A 4

Optimal filtering Ci,(t) = f_ dfd1(ti ds(t; f)

Filter to be determined
Starting from given a model

Total observation time (segment duration)

crosseomeeion (M) = (L(NA ) ~ (R (OR(N) ;C?ru(f)sh )

estimator
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The isotropic search: optimal filtering (1)

earching for a 3 H? Q, a=3 342 1 a-3
Searchine | Sp(f) === (f) E@Sa(f), S,(f) = Ho <f)

power-law model 2172 fr3ef fref 2772 fr3ef fref

Get an estimator for
Q, through

Optimal filtering Ci,(t) = f_ dfd1(ti fds(t; f)

Filter to be determined
Starting from given a model

Total observation time (segment duration)

crosseomeeion (M) = (L(NA ) ~ (R (OR(N) ;C?ru(f)sh )

estimator

with
l Neg = (C2 (N ECR () = (Co (DN ()@ (Hni (F )X (s (F))
(Noise) correlation Weak-signal limit
matrix T

1
=7 (DB, NG - ) u(n(F)) =5 B, (AU — )

1-sided noise power spectral density

(*)6(f = f') = Tsinc[n(f — f)T]



Optimal
estimator

The isotropic search: optimal filtering (2)

Energy ratio estimato

L2 (f)Sa(f)

_NfPUmﬂ)

d(Hd(Naf thj

vela).

Flz(f)Sz(f) ]
oo Py (F) P, (f)

Estimator variance

Flz(f)Sz(f) ]
B, (F) P, (f)

Model dependent, optimal filter,

swn = o)

A — Flz(f)Sa(f)
WD =N PR
5 (f)SE (f) Signal-to-noise ratio

oo Py (F) P, (f )

proportional to VT
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The isotropic search: optimal filtering (2)

En

ergy ratio estimato

b=

2 (f) a(f)

B, (F) P, (f)

d,()d;(Hdf

Estimator variance

[ j F12(f)52(f)
Uﬂa

oo Py (F) P, (f)

Model dependent, optimal filter,

o]

Optimal Flz(f)Sz(f) ] - T (S, (f)
oo | =] n PR 0D =N g A (D
(f)S (f) Signal-to-noise ratio
But in real SNR = \@f Pnj (f)PZz (f) proportional to \/T
world
~ _ 2 Re[&l (f)d; (f)] 2 _ 1 Pnl (f)Ple (f) ““Narrow-band”’
SRS e RO 0 S ATaf T (s | esmae
ingle frequency bins
_ Zk-Q (fk) (fk) 1 ‘““Broad-band”’
a Zk’ 55 (fkr) O'ﬁa Zk, (fk/) estimator
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Monthly Notices

MNRAS 513, 1105-1114 (2022) https:/fdoi.org/10. 1093/mnras/stac984
Advance Access publication 2022 April 9

Stochastic gravitational-wave background searches and constraints on
neutron-star ellipticity

Federico De Lillo ”.* Jishnu Suresh“ and Andrew L. Miller ”
Centre for Cosmology, Particle Plhvsics and Phenomenalogy (CF3), Universitd catholigue de Lowvaia, Lowvain-la-Newve B-1348, Belgium

Accepted 2022 April 5. Received 2022 Aprl 4: in original form 2022 March 14

ABSTRACT

Rotating neutron stars (NSs) are promising sources of gravitational waves (GWs) in the frequency band of ground-based
detectors. They are expected to emit quasi-monochromatic, long-duration GW signals, called continuous waves (CWs), due to
their deviations from spherical symmetry. The degree of such deformations, and hence the information about the internal structure
of an NS, is encoded in a dimension-less parameter £ called ellipticity. Searches for CW signals from isolated Galactic N5s have
shown to be sensitive to ellipticities as low as & ~ ((10~7). These searches are optimal for detecting and characterizing GWs
from individual NSs, but they are not designed to measure the properties of NSs as population, such as the average ellipticity
£av. These ensemble properties can be determined by the measurement of the stochastic gravitational-wave background (SGWB)
arising from the superposition of GW signals from individually undetectable NSs. In this work, we perform a cross-correlation
search for such a SGWB vsing the data from the first three observation runs of Advanced LIGO and Virgo. Finding no evidence
for an SGWB signal, we set upper limits on the dimension-less energy density parameter £2g.(f). Using these results, we also
constrain the average ellipticity of Galactic NSs and five NS ‘hotspots’, as a function of the number of NSs emitting GWs
within the frequency band of the search Npa,g. We find 5, = 1.8 % 1078, with Npgg = 1.6 % 107, for Galactic NSs, and
Eay < [3.5 — 11.8] % 1077, with Npang = 1.6 x 10'%, for NS hotspots.

Key words: gravitational waves.
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Rotating neutron stars (NSs) are promising sources of gravitational waves (GWs) in the frequency band of ground-based
detectors. They are expected to emit quasi-monochromatic, long-duration GW signals, called continuous waves (CWs), due to
their deviations from spherical symmetry. The degree of such deformations, and hence the information about the internal structure
of an NS, is encoded in a dimension-less parameter £ called ellipticity. Searches for CW signals from isolated Galactic N5s have
shown to be sensitive to ellipticities as low as & ~ ((10~7). These searches are optimal for detecting and characterizing GWs
from individual NSs, but they are not designed to measure the properties of NSs as population, such as the average ellipticity

£av- These ensemble properties can be determined by the measurement of the stochastic gravitational-wave background (SGWB)
arising from the superposition of GW signals from individually undetectable NSs. In this work, we perform a cross-correlation

search for such a SGWB using the data from the first three observation runs of Advanced LIGO and Virgo. Finding no evidence

for an SGWB signal, we set upper limits on the dimension-less energy density parameter £2g.(f). Using these results, we also
constrain the average ellipticity of Galactic NSs and five NS ‘hotspots’, as a function of the number of NSs emitting GWs
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Modelling the source — The signal
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Modelling the source — The signal

* GW strain amplitude from an isolated, rotating, non-axisymmetric neutron star, at a distance d from
Lxx—lyy

IZZ

Earth, with a moment of inertia along z-axis I,,, and an ellipticity € =

4w2G ey,
ctd

* GW power spectral density from incoherent sum of the individual contributions:

ho(f) =

H(f) = 8m fENC),

NS

5¢8 d?

2 32m* G2 s 2 ) < 1

with (... )ys the ensemble average over the NS population, and N(f) the number of NSs emitting GWs
between [f, f + df], defined as

N(F) = No®(f), Ny j O(f) df = No.
0
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Modelling the source — The population

(I z)NS = 1038kg m?

d2
« Ny~108, assuming a Galactic supernovae rate to be 1072yr~1[Diel et al. 2006], and the age of the Milky Way to
be 101%yr.

L\ 12
. <—> = 6 kpc for Galactic NSs
NS
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Modelling the source — The population

(I z)NS = 1038kg m?

1

~1/2
<ﬁ> = 6 kpc for Galactic NSs
NS

N,~108, assuming a Galactic supernovae rate to be 10"2yr~1[Diel et al. 2006], and the age of the Milky Way to
be 101%yr.

®(f) from the (log,o-) frequency distribution of the =~3000 pulsars of the ATNF catalogue, by means of a
Gaussian Kernel Density Estimator (KDE)
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®(f) Gaussian KDE from ATNF catalogue . Secondary peak at 526 Hz,
falling within the frequency band to which the ground-based
gravitational-wave detectors are sensitive.
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the peak is shifted to a higher frequency, at 1688 Hz.
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Modelling the source — The population

(I z)NS = 1038kg m?

L\ 12
<ﬁ> = 6 kpc for Galactic NSs
NS

N,~108, assuming a Galactic supernovae rate to be 10"2yr~1[Diel et al. 2006], and the age of the Milky Way to
be 101%yr.

d(f) from the (log,o-) frequency distribution of the =~3000 pulsars of the ATNF catalogue, by means of a
Gaussian Kernel Density Estimator (KDE)

Npana, number of NSs emitting GWs in the frequency band of the search [f,in , finax] = [20,1726] Hz:

1726 Hz

fmax
Npana = NOJ o(f)df = Nof O(f)df = 0.16 Ny~1.6 x 107

min 20 Hz
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Modelling the source — The population

(I z)NS = 1038kg m?

L\ 12
<ﬁ> = 6 kpc for Galactic NSs
NS

N,~108, assuming a Galactic supernovae rate to be 10"2yr~1[Diel et al. 2006], and the age of the Milky Way to
be 101%yr.

d(f) from the (log,o-) frequency distribution of the =~3000 pulsars of the ATNF catalogue, by means of a
Gaussian Kernel Density Estimator (KDE)

Npana, number of NSs emitting GWs in the frequency band of the search [f,in , finax] = [20,1726] Hz:

1726 Hz

fmax
Npana = NOJ o(f)df = Noj O(f)df = 0.16 Ny~1.6 x 107

min 20 Hz

Remark1: In this work, we have not considered the angular distribution of the Galactic NSs, and we have treated
the corresponding stochastic gravitational-wave background as isotropic.

Remark2: Including the all the anisotropies would require to employ the matched-filtered “A-statistic”,
proposed in Talukder et al., 2011, and produce a template bank, out of the scope of the present work. See the
recent paper by Agarwal at al., 2022, where this method is implemented.
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https://www.atnf.csiro.au/research/pulsar/psrcat/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.063002
https://arxiv.org/abs/2204.08378

Isotropic analysis: recap about notation
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(Ra(f, D) B (F,21)) =

homogeneus isotropic background,
not simple power-law.

Cross-correlation spectra as narrow-
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band estimator (1) = {H, L, V}) of Q,, (f).

3H§ Qg (f) o
H(f) o g f3 ng(f) = Qa,ref (f”rif) CI)(]E:;/>
. 2 Re[3,(H)33() 2o 1 POP()
1N (D =TSO Y vi;(HSE ()
So(f) = 2f3

77



Isotropic analysis: recap about notation

Gaussian, stationary, unpolarized,

homogeneus isotropic background,
not simple power-law.

Cross-correlation spectra as narrow-

(Ra(f, D) B (F,21)) =

2
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Q‘gw(f) = Qa,ref (fff)

—H(f)5(f f)84a8% (R, A)
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band estimator (1) = {H, L, V}) of Q,, (f).

Broad-band estimator, from

weighted sum over frequencies
and independent baselines
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Getting the estimator for the ensemble ellipticity (1)

Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population
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Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population
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Getting the estimator for the ensemble ellipticity (2)

Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population
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Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population
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Getting the estimator for the ensemble ellipticity (3)

Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population

Estimator for
Eav = <£>NS

é\av(fk) = \/(?)av (fk)

%2 (fx)

e(fr)«1

~ (0.12

aa (fi)
$

Variance of £,,,(f 1)

These are narrow-band estimators, and we need to combine them over the frequencies



Getting the estimator for the ensemble ellipticity (3)

Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population

Estimator for
Eav = <£>NS

é\av(fk) = \/(?)av (fk)

%2 (fx)

e(fr)«1

~ (0.12

aa (fi)
$

Variance of £,,,(f 1)

These are narrow-band estimators, and we need to combine them over the frequencies

Optimal broadband estimator

A

~2

Eopt —

_ Xk éUi)/ o (fir) W
2 y are we
2 1/018 (i) doing this?

Pt S 1/02(fi)




Getting the estimator for the ensemble ellipticity (3)

Final goal: use results of the previous analysis to build an estimator for the average ellipticity of the NS population
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Table 1. Results of the isotropic search for a SGWB from an ensemble of Galactic NSs using data from the first three LIGO-Virgo-KAGRA observing runs, and
the subsequent constraints on the average ellipticity of the Galactic NS population. The first four columns are the results from our search, in which Q(f). the

cross-correlation statistics, and the upper limits on Qp.r,|using a uniform and log-uniform prior,

the Galactic NS population, such as ®©(f) and Npyng. the average ellipticity optimal estimator, and the upper limit obtained by assuming a

£lbetween 10712 — 1074

are reported. The last four columns encode information about

log-uniform prior
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Table 1. Results of the isotropic search for a SGWB from an ensemble of Galactic NSs using data from the first three LIGO-Virgo-KAGRA observing runs, and
the subsequent constraints on the average ellipticity of the Galactic NS population. The first four columns are the results from our search, in which Q(f). the

cross-correlation statistics, and the upper limits on Qp.r,|using a uniform and log-uniform prior,
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Figure 4. 68% (dashed) and 95% (solid) confidence-level Bayesian upper
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Discussion and Conclusions

In this work, we have derived constraints on the average ellipticity of a neutron-star population from the results of a
cross-correlation-based search for a stochastic gravitational-wave background.

In this talk, we have focussed on the Galactic neutron stars, and the search for isotropic background, using the the data
from the first three observation runs of Advanced LIGO and Virgo. (See backup slides for the “hotspot” case.)
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We have not found compelling evidence of a SGWB signal from any of the considered sources and hence have set upper
limits on the intensity of the background by bounding the energy density parameter Q,, (f).

These results have then been translated to constraints of the Galactic NS average ellipticity, obtained to be as low as
E4p < 1.8 X 1078 with Ny 4,4 = 1.6 X 107NSs, and are the first of their kind.



Discussion and Conclusions

In this work, we have derived constraints on the average ellipticity of a neutron-star population from the results of a
cross-correlation-based search for a stochastic gravitational-wave background.

In this talk, we have focussed on the Galactic neutron stars, and the search for isotropic background, using the the data
from the first three observation runs of Advanced LIGO and Virgo. (See backup slides for the “hotspot” case.)

We have not found compelling evidence of a SGWB signal from any of the considered sources and hence have set upper
limits on the intensity of the background by bounding the energy density parameter Q,, (f).

These results have then been translated to constraints of the Galactic NS average ellipticity, obtained to be as low as
E4p < 1.8 X 1078 with Ny 4,4 = 1.6 X 107NSs, and are the first of their kind.

These results are not directly comparable to the ones obtained from continuous wave searches, which are have a stronger
constraining power (e~107?), but target one neutron star at a time, and are limited by their computational cost.

Stochastic searches, on the other hand, have become computationally efficient and faster, and allow to instantaneously
identifying the features of an ensemble of known or unknown NSs, which would otherwise require decades/centuries to
be determined through individual NS discoveries.

Possible synergies between the two searches, using the stochastic ones to perform a blind, rapid all-sky search for NS
signals and transmit the coordinates of possible outliers as inputs of the continuous wave ones, for a more refined and
sensitive search.



How to extend this work

We could gain even more information about NS populations by treating the average squared moment of inertia and the
average square inverse distance as free parameters.

Additionally, we could estimate and set constraints on these quantities through a full Bayesian search, in which priors
could be derived from population synthesis simulations.
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average square inverse distance as free parameters.

Additionally, we could estimate and set constraints on these quantities through a full Bayesian search, in which priors
could be derived from population synthesis simulations.

These simulations could also be used to model the NS frequency and angular distributions, which could then be used as
an alternative to those derived from the ATNF catalogue, especially in the case of extra-galactic NSs.

The inclusion of angular distribution of the NSs would allow to perform a template-based matched-filtering search using
the A-statistics from Talukder et al. 2011, which may set less conservative upper limits. (This has actually already been
implemented in Agarwal at al., 2022).
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How to extend this work

We could gain even more information about NS populations by treating the average squared moment of inertia and the
average square inverse distance as free parameters.

Additionally, we could estimate and set constraints on these quantities through a full Bayesian search, in which priors
could be derived from population synthesis simulations.

These simulations could also be used to model the NS frequency and angular distributions, which could then be used as
an alternative to those derived from the ATNF catalogue, especially in the case of extra-galactic NSs.

The inclusion of angular distribution of the NSs would allow to perform a template-based matched-filtering search using
the A-statistics from Talukder et al. 2011, which may set less conservative upper limits. (This has actually already been
implemented in Agarwal at al., 2022).

Finally, from the synthesised population, the corresponding SGWB signal could be simulated, and its prospects for
detection and characterization could be examined within the networks of the future detector.

Two ways of doing this would be to consider a network, where KAGRA and the future LIGO-India are included, or
considering the next-generation interferometers, such as Einstein Telescope and Cosmic Explorer, and evaluate their
impact on these kinds of searches.


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.063002
https://arxiv.org/abs/2204.08378
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FIG. 3. Cross-correlation spectra combining data from all
three baselines in O3, as well as the HL. baseline in O1 and
02. As described in the main text, the spectrum is consistent
with expectations from uncorrelated, Gaussian noise.
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Power law | f&E [Hz] |CHE /1077 | f8Y [Hz] |CHY 1077 f&Y, [Hz] |CFY /1072 | fQLFO2H03 [Hy) | CO1HO2H03 /1070

99%
0 76.1 —21+£82| 97.7 2290 + 98 88.0 —134 =63 76.6 1.1+£7.5
2/3 90.2 —3.4+£61| 117.8 145 = 60 107.3 —824+40 90.6 —0.2+£5.6
3 282.8 |—-1.3x£09| 3758 91+4.1 388.0 |[—4.9x+3.1 201.6 —0.6 £0.8

TABLE 1. Search results for an isotropic GWB, using the optimal filter method for power law GWBs with o = {0,2/3, 3}. For

each of the three baselines I.J, we show the point estimate and 1o uncertainty for the cross-correlation estimate Cf 7, alcrng with
the frequency band from 20 Hz to fggc}, containing 99% of the sensitivity. We see that the HL baseline is the most sensitive, and
the HV and LV baselines are more sensitive at higher frequencies, and for larger spectral indices, due to the longer baseline. In
the last two columns, we also present the search result combining all three baselines from O3, as well as the O1 and O2 data.
As noted in the main text, the point estimates for the HV and LV are approximately 20 away from zero, however this is not
consistent with a GWB given the result of the much more sensitive HL. baseline.

Uniform prior Log-uniform prior
o 03 02 Improvement O3 02 [43] Improvement
0 1.7x10°°6.0x 10°° 3.6 58 x 1077 35 x10°° 6.0
2/3 [1.2x107° 4.8 x 107 4.0 34x107Y 3.0x107"® 8.8
3 1.3x107? 7.9x107° 5.9 39x 1071 51 x107° 13.1
Marg.|2.7 x 107% 1.1 x 1077 4.1 6.6 x 1077 3.4x 1078 5.1

TABLE II. Upper limits at the 95% credible level on e under the power law model for the GWB. We show upper limits
conditioned on different fixed power law indices «, as well as a marginalized limit obtained by integration over «, using a
Gaussian prior with zero mean and a standard deviation of 3.5. We show the results using a prior that is uniform in ef.
as well as uniform in log {2yef. As described in the main text, the uniform upper limits are more conservative, while the log
uniform priors are more sensitive to weak signals. We also compare with the upper limits from [43], and give the improvement

factor we achieve using O3 data. Phys. Rev. D 104 02120604 (2021)
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FIG.5. Fiducial model predictions for the GWB from BBHs, BNSs, and NSBHs, along with current and projected sensitivity curves.
In the left panel we show 90% credible bands for the GWB contributions from BNS and BBH mergers. Whereas the BNS uncertainty
band illustrates purely the statistical uncertainties in the BNS merger rate, the BBH uncertainty band additionally includes systematic
uncertainties in the binary mass distribution, as described in the main text. As no unambiguous NSBH detections have been made, we
only show an upper limit on the possible contribution from such systems. The right panel compares the combined BBH and BNS energy
density spectra, and 2o power-law integrated (PI) curves for O2, O3, and projections for the HLV network at design sensitivity, and the
A + detectors. The solid blue line shows the median estimate of Qggyy . gys(f) as a function of frequency, while the shaded blue band
Hllustrates 90% credible uncertainties. The dashed line, meanwhile, marks our projected upper limit on the total GWB, including our
upper limit on the contribution from N5SBH mergers.
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Maximum likelihood approach
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Segment label T: much larger than light travel time between
detectors but small enough to prevent significant
variation of the detector response function
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Maximum likelihood approach
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Maximum likelihood estimator
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All-sky BBR Results

Max SNR (% p-value) Upper limit ranges (10'8}
a | Qaw  H{J) [[HL{O3) HV{O3) LV{03) O1+02+03 (HLV)[[O1+02+03 (HLV)[O1 + 02 (HL)
0 [constant o J ° ||2.3 (66) 3.4 (24) 3.1 (51) 26 (23) 1.7-7.6 45 - 21
2/3 | e f2? o« f77/3|(2.5 (59) 3.7 (14) 3.1 (62) 2.7 (24) 0.85 - 4.1 23-12
3 | «xf® constant||3.7 (32) 3.6 (47) 4.1 (12) 3.6 (20) 0.013 - 0.11 0.047 - 0.32

TABLE 1. The maximum SNR across all sky positions, its estimated p-value, and the range of the 95% upper limits on
gravitational-wave energy flux Fae Jerg cm™2 s~ Hz™'] set by the BBR search for each baseline and for the three baselines
combined using data from LIGO three observing runs and Virgo O3. The median improvement across the sky compared to
limits from O2 analysis is a factor of 3.5 - 3.8, depending on a. O1+02 upper limits reported in the last column differ from
the upper limits reported in [53] for the reasons explained in the main text.

a=2/3

O3-

directional:
BBR results

5.6 76 1.9 1.9 10 N i1 0.5 s 1.1

(T : Hz 's \ {l‘?',"\(]!! * Hz 3 l[ ey cm :”'/t s I

FIG. 2. Top row: SNR maps from a BBR search for point-like sources. Bottom row: upper limit (UL) sky maps of the

gravitational-wave energy flux. Both sets of maps, presented in equatorial coordinate system, are derived by cohiBining all
PhVS.RGV.D 104 (2021) 2; 022005 three LIGO observing runs and the Virgo O3 data. a = 0, 2/3, and 3 are represented from left to right.
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O3-

directional:
SHD results
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SHD Results

Max SNR (% p-value)

Upper limit range (10~%)

a | Uew  H({J) [[HL{03) HV{03) LV{03) 01+02+03 (HLV)[[01+02+03 (HLV)]O1 + 02 (HL)
0 |[constant o f~° [[1.6 (78) 2.1 (40) 1.5 (83) 2.2 (43) 3.2-9.3 7.8-29
2/3 | x f2* o f~7/2]|3.0 (13) 3.9 (0.98) 1.9 (82) 3.7 (1.7) 1.9-9.7 6.5-25
3 | = f* constant|[3.9 (12) 4.0 (10) 3.9 (11) 3.2 (60) 0.56-3.4 1.9-11

TABLE II. We present the maximum SNR across all sky positions with its estimated p-value for the three separate baselines
in the O3 observing as well as all three observing runs combined. We also present the range of the 95% upper limits on the
normalized gravitational-wave energy density 2. (©)[sr~'] after combining data from LIGO-Virgo's three observing runs. Note
that for both the p-values and the upper limits, Virgo-related baselines are incorporated only for O3. The median improvement
across the sky compared to limits set by the O1+02 analysis is 2.8 — 3.2 for the SHD search, depending on a.

a=20

a=2/3

FIG. 3. Top row: SNR maps from the SHD search for extended sources. Bottom row: sky maps representing 95% upper limit

on the normalized gravitational-wave energy density Q.(©)[sr—']. Both sets of maps, presented in equatorial coordinate system,
are derived by combining all three observing runs of LIGO-Virgo data (Virgo was incorporated only for O3). a =0, 2/%,1§nd
3 are represented from left to right.
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with P( f,n) being the GW strain power.

P(f.n)= H(f)P(#), (C7)

where H(f) is defined in such a way that H(f¢) = 1. P(f) is the
angular distribution of gravitational-wave power to be estimated by
the search. For the signal model presented in section 3, H(f) turns
out to be

_ f ]4 O(f)
H — i C8
(f] (f ref {I}(fl'ﬂf } ( ]

ppach _ Zkj PUic ) o (i i) H()
ref >k o 2(fi i) H(f)?

~1/2

»

oh = Z (i iy) H(F)?
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To measure the anisotropies, the radiometer search introduces a
maximum-likelihood (ML) estimator (Mitra et al. 2008; Thrane et al.
2009), as statistic, at each frequency and each direction (Abbott et al.
2021c¢) ?3[ f, i) with cross-correlation matrix o s (f):

P(fi) = ) [Taw (DI Xar (), (C2)

aa(f) = [Can (HITV2, (C3)

where X;( f) is called “dirty map™ and [';;; is the Fisher information
matrix in the small-signal limit. The summation over A’ implies
integration over the solid angle. The dirty map represents the sky
seen through the response of a set of independent baselines [.J,

defined as

lyrs @ O Cra(es f)
Xal =1tAfR n :
N=m81% ) G n P

(C4)
where C'”(r;f} = [Efr]."s’;{r;f) §j(1: f) is the cross-correlation
spectral density, while yy y(1: f, i) is the directional overlap reduction
function, which is proportional to the isotropic one in equation (8)
when integrated over the sky. The Fisher information matrix encodes
the uncertainty in the measurement of the dirty map, and is defined
as

(C5)

lyra @ )15 [yra(t: F)la
r" LY = Tﬁ ﬁ n .
D=0 R ) e PG

The ML estimator P( f, /i) in equation (C2), involves the inversion
of I'; 4 (f), which can be singular in general and must be regularised.
However, for point-like sources considered here, we can work by
employing the pixel basis

P(f.h) = P(f.7') 5> ('), (C6)

and ignore the correlation among neighbourhood directions in the
sky (Abbott 2021b; Abbott et al. 2021c), and the Fisher information
matrix is no longer singular and becomes diagonal. With this caveat,
the estimator can be used to set upper limits on Qg ( f, /i) and related
quantities.
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B Virgo B Fornax Antlia B Centaurus Hydra

Figure 3. The sky-patches associated with the five NS hotspots: Virgo, For-
nax, Antlia, Centaurus, and Hydra clusters. Each patch consists of 9 pixels
with N4 = 16: the central one being the one associated with the galaxy
cluster, and the eight closest neighbours. The sky map is represented as a
Mollweide projection of the sky in ecliptic coordinates. 18
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Figure C1. Upper limit sky maps on GW energy flux from the broadband-
radiometer analysis for the model H(f) in equation (C8). Here the NSs
frequency distribution ®(f) is the one built from the ATNF catalogue as
described in section 2. The sky map is represented as a color bar plot on a
Mollweide projection of the sky in ecliptic coordinates with Ngjqe = 16.
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Hospot  (1/d?) " (Mpe) ~ &Q1+02:03/1079 5% - /107"
Virgo 18 0.6 £ 10.6 3.6
Fornax 19 0.5+ 10.1 3.5
Antlia 40.7 1.5+£22.1 1.6
Centaurus 5324 1.4+27.9 9.6
Hydra 58.3 3.8+34.2 11.8

Table 2. Relevant parameters and results of searches for NSs in hotspots.

For each cluster of galaxies, a fiducial value of {1 Idzmgl (second column),
the broadband estimator £y (third column), and the 95% confidence level
Bayesian upper limits on the average ellipticity of the population (fourth
column) are reported. The upper limits have been obtained by assuming a
log-uniform prior between 10~'% — 10~ over the ellipticities.
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Astrophysical GWB: nature

Duty cycle:

* ratio between the duration of the events and the time interval between successive events
e average number of events present at the detector at a given observation time
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same order of the duration of
a single event

waveforms may overlap but no
Gaussian statistic
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Shot noise (A(z) << 1)
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of a single event

waveforms are separated by
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Expectation: a gaussian,
Gravitational counterpart stationary, unpolarized,

of the CMB isotropic background
GWB (first approximation)
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