Modeling CSM interaction

Luc Dessart Institut d'Astrophysique de Paris

Observational context: Light curves

Observational context: Spectra

The case of "standard" interacting SNe

High CSM mass/density/extent

- $\Rightarrow \tau$ (CSM) large
- \Rightarrow Ejecta deceleration (CDS velocity decreases with time)
- \Rightarrow Conversion Ekin to Erad and release on diffusion time
- \Rightarrow Reprocessing of radiation by CSM produces the narrow lines
- \Rightarrow Treatment requires radiation hydrodynamics

Numerical Simulations of Interacting Supernovae with HERACLES

- Configuration: Faster inner shell (Ekin) and slower massive outer shell (Mass)
- Multi-group Radiation hydrodynamics with HERACLES (Audit/Gonzalez)
- Application to SLSN IIn 2010jl (Dessart, Audit, Hillier 2015)

Evolution of interaction: Day 4.1

Evolution of interaction: Day 389.9

Numerical Simulations of Interacting Supernovae

- Shock powered luminosity: $L_{
 m shock} \sim 2\pi r^2
 ho_{
 m csm} v_{
 m shock}^3$
- Optical depth effects : L_{bol}<L_{shock} for t<t_{diff}
- LC break when shock leaves dense CSM

Spectral evolution: post-processing with CMFGEN

Post-processing with CMFGEN non-monotonic solver Reproduction of narrow symmetric profiles Very slow spectral evolution Evolution to lower T/color (fixed R_{phot})

Problems

- Post-processing with CMFGEN only works when $\tau > 1-10$
- T from hydro is LTE
- \Rightarrow Method good only at early times
- ⇒Method will eventually fail at some late time (depending on Mdot)

Bypassing Radiation Hydrodynamics

- Mdot from 1e-5 to 1e-3Msun/yr: optically thin but huge shock power
- \Rightarrow Neglect CDS growth in mass
- \Rightarrow Neglect absorption emission/absorption from unshocked CSM
- \Rightarrow Introduce solely shock power. Treat as decay power
- **Benefit**: focus on thermalized shock radiation only, treat the full problem in non-LTE **Minuses**: no signatures from unshocked CSM, no X-rays, not fully consistent

Photometric impact for various constant shock powers

- Weak impact in optical though depends on thermalization, clumping etc
- Strong impact on the blue (UV, U-band)
- Impact on color

Fig. 3. Comparison of the observer's frame luminosity in the UV and optical ranges for our set of models with an interaction power covering from zero to 10^{43} erg s⁻¹ and at a time of 41.76 d. The inset zooms on the H α region. The thick vertical line represents the rest wavelength of H α , and the thin vertical lines indicate the wavelength at ± 11700 km s⁻¹ away from that rest wavelength.

Application to SN1993J at late times

- Modeling of the interaction with CMFGEN. Ignore decay.
- Dense shell of 0.2Msun moving at 8500km/s at 976d
- Vary power, clumping, composition

Variation in power

The 976d spectrum of 1993J

