VERY HIGH ENERGY EMISSION IN GAMMA-RAY BURSTS

Lara Nava

OSSIFALATORIO ASTRONOMICO

INAF Osservatorio Astronomico di Brera

Lara Nava

Gamma-Ray Bursts (GRB)

The general picture

Prompt emission

OBSERVATIONS

- keV MeV
- Non-thermal
- One single spectral component

OPEN ISSUES

- Radiative mechanism
- Dissipation mechanism
- Nature of variability
- Properties at the emitting region

Gamma-Ray Bursts (GRB)

The general picture

Afterglow emission

OBSERVATIONS

- Longer duration
- smooth light-curves (PL decay)
- Soft X-ray to radio
- GeV

INTERPRETATION

 Mostly synchrotron from electrons at forward shock

LIMITATIONS

- Large degeneracies among model parameters:
 - Jet energy and Lorentz factor
 - Environment
 - particle acceleration

Observations at VHE (>0.1TeV)

STATUS

- Eluded IACTs (Imaging Atmospheric Cherenkov Telescopes) for many years
- Until 2019 unclear if GRBs are VHE emitters
- Not robust predictions from theory
- Since 2019: 5 detections

RELEVANCE OF VHE OBSERVATIONS

- Prompt: understand nature of radiative mechanism
- Afterglow: place further constraints on model parameters
- EBL, LIV, IGMF, ...

A summary

Miceli D. & Nava L., 2022, Galaxies, 10, 66

	<i>T</i> ₉₀ s	$E_{\gamma,iso} \ { m erg}$	Z	T _{delay} s	E _{range} TeV	IACT (sign.)
160821B	0.48	$1.2 imes 10^{49}$	0.162	24	0.5-5	MAGIC (3.1σ)
180720B	48.9	$6.0 imes 10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 <i>σ</i>)
190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 <i>σ</i>)
201015A	9.78	$1.1 imes10^{50}$	0.42	33	0.14	MAGIC (3.5σ)
201216C	48	$4.7 imes 10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)

significance $< 5\sigma$

significance > 5σ

MAGIC Detection of GRB 190114C

General properties

- Long GRB
- z = 0.42
- $E_{prompt} = 2.5 \times 10^{53} erg$

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range
 0.3-1 TeV

MAGIC Detection of GRB 190114C

MAGIC Detection of GRB 190114C

General properties

- Long GRB
- z = 0.42
- $E_{prompt} = 2.5 \times 10^{53} erg$

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range
 0.3-1 TeV

MAGIC Detection of GRB 190114C

TeV detections by IACTs H.E.S.S. Detection of GRB 180720B

General properties

- Long GRB
- z = 0.65
- $E_{prompt} = 6 \times 10^{53} erg$

HESS detection

- ~10 hours after the GRB
- in the energy range
 0.1-0.44 TeV

TeV detections by IACTs H.E.S.S. Detection of GRB 190829A

General properties 190829A • Long GRB .S. (200 GeV - 4.0 TeV) H.E. 10^{-8} Energy flux -LAT (100 MeV - 1 GeV) Energy flux (erg cm⁻² s⁻¹) Swift-BAT (15 keV - 50 keV) Ν 10 • z = 0.079 Swift-XRT (0.3 keV - 10 keV) g 10^{-9} 510 • $E_{prompt} = 2 \times 10^{50} erg$ $\begin{array}{cccc} 40 & 60 & 80 & 100 \\ \text{Time since } T_0 \text{ trigger (s)} \end{array}$ 10^{-10} 10-11 $\alpha_{\rm HESS} = 1.09 + / - 0.05$ $\alpha_{\rm XRT} = 1.07 + / - 0.09$ **HESS** detection 10-12 ~4 hours after the 2.5 Photon index GRB 2.0 in the energy range 1.5 0.2-3.3 TeV 10³ 10^{4} 10⁵ 106 Time since T₀ trigger (s)

H.E.S.S. Collab, 2019, Nature, 575, 464

TeV detections by IACTs H.E.S.S. Detection of GRB 190829A

H.E.S.S. Detection of GRB 190829A

TeV detections by IACTs MAGIC GRB 201216C

General properties

- Long GRB
- z = 1.1
- $E_{prompt} = 5 \times 10^{53} \text{ erg}$

MAGIC detection

- 57 seconds after the prompt
- Significance of detection ~6 sigma
- paper in preparation, almost ready for submission

Summary

WHAT HAVE WE LEARNED?

- Energy emitted at VHE can be similar to energy emitted at lower frequencies
- SSC is a viable explanation
- VHE emission can be produced by both energetics and under energetics GRBs
- VHE emission can last for days
- HE (LAT) observations are fundamental

OPEN QUESTIONS

- Origin of >100 GeV emission is still debated
- do short GRBs also have conditions to produce a detectable VHE flux?
- VHE emission during the prompt?

Future prospects CTA - Cherenkov Telescope Array

Consortium paper on prospects for CTA observations of GRB in preparation

Future prospects

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - z = 0.078 (same as
 HESS GRB 190829A)

Vercellone et al., 2022 ASTRI Mini-Array core science at the Observatorio del Teide

The brightest ever detected

GRB 221009A An intrinsically luminous GRB at z = 0.15

PROMPT

200000

175000

150000

125000

100000

75000

50000

25000

0 -

0

Count Rate(count/s)

- **GBM** saturated ۲
- LAT pile-up (200-800s, ph index = -1.87; one photon with 100 GeV at 240 s)

PROMPT LIGHT CURVE GBM

400

600

time(s)

AT photon 100 GeV

- E_{iso} ~ 10⁵⁴ 10⁵⁵ erg
- L_{iso} ~ 10⁵³ erg/s
- Duration ~ 600 s (long GRB)

200

An intrinsically luminous GRB at z = 0.15

PROMPT

- GBM saturated
- LAT pile-up (200-800s, ph index = -1.87; one photon with 100 GeV at 240 s)
- $E_{iso} \sim 10^{54} 10^{55} \text{ erg}$
- $L_{iso} \sim 10^{53} \text{ erg/s}$
- Duration ~ 500 s (long GRB)

AFTERGLOW

• XRT, optical, radio, LAT (~3600-6600s, photon index = -2.12)

OTHER OBSERVATIONS

- LHAASO in the first 2000 s >5000 photons above 0.5 TeV, maximum photon energy detected 18 TeV
- Carpet-2: 250 TeV-photon like air shower
- HAWC observations started 8 hours after T₀, no detection
- IceCUBE: zero track-like muon neutrinos from T_0-1 hour to T_0+2 hours
- KM3NeT: zero track-like muon neutrinos from T_0 -50s to T_0 +5000s

GRB 221009A Afterglow emission

Why all this interest?

Consider EBL flux attenuation at 18 TeV and z=0.15:

Overview on papers appeared on arXiv

Papers on the arXiv (26 in total)

- 9 discuss ALP (axion-like particles)
- 6 LIV ($\gamma\gamma$ -e⁺e⁻ threshold anomaly)
- 3 UHECR
- 3 heavy sterile neutrinos
- 1 Galactic lensing
- 1 ionospheric disturbance
- 2 GRB physics
 - 1 IceCUBE limit to constrain prompt emission models
 - 1 afterglow SSC to explain 18 TeV

most papers on astroparticle, LIV, IGMF,...

Is the 18 TeV photon really problematic?

The answer depends on:

- Intrinsic source spectrum
- EBL model
- LHAASO sensitivity
- LHAASO energy resolution
- Time of detection

EBL Model	$ au_{18}$	$ au_{10}$	$N_{\gamma,0.5}$	$N_{\gamma,18}$
Fr2008	18.2	6.7	4900	6×10^{-4}
SL2021	19.1	6.9	5100	3×10^{-4}
K&D2010	9.2	4.5	6800	5
Fi2010	9.9	6.0	4000	3
Do2011	19.2	6.1	4500	2×10^{-4}
Do2011+	27.1	7.8	3900	9×10^{-8}
Do2011-	13.5	4.4	5800	7×10^{-2}
Gi2012	13.3	5.4	4500	9×10^{-2}
Gi2012f	13.8	5.6	5600	5×10^{-2}

Baktash et al., 2022

Is the 18 TeV photon really problematic?

THANK YOU FOR YOUR ATTENTION

Lara Nava

INAF Osservatorio Astronomico di Brera

8 NOV 2022

Lara Nava

IAP - PARIS