

MSCA

Marie Skłodowska-Curie Actions

stellar BBH mergers in AGN environment

Journal Club - Nov 26, 2019 Gwen de Wasseige

Disclaimer

- Many articles treating the topic, only 4 discussed today
- Many unknown, many ignored effects
- <u>Promising future:</u> more detailed simulations
 + higher statistics in GW data
- Discussion about BBH, but similar conclusion for neutron star
- Try to focus on observables
- Not an expert...

Molivalion

- More massive BBHs than inferred from EM observations in our galaxy
- Isolated binary evolution could explain the LVC BBH rate, but an additional mechanism would help
- AGN and their disk represent a promising site for dynamical BBH encounter/merger

Image from Bartos et al., Astrophys.J. 835 (2017) 165

- A. BHs ground down to the disk due to gas damping
- B. BHs migrate through the disk due to angular momentum exchange with the disk
- C. BHs have higher chance to form a binary in migration traps

Image from Bartos et al., Astrophys.J. 835 (2017) 165

- A. BHs ground down to the disk due to gas damping
- B. BHs migrate through the disk due to angular momentum exchange with the disk
- C. BHs have higher chance to form a binary in migration traps

Image from Bartos et al., Astrophys.J. 835 (2017) 165

1 - On stellar-mass black hole mergers in AGN disks detectable with LIGO, B. McKernan et al. (<u>https://arxiv.org/abs/1702.07818</u>)

2 - Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes, A. Secunda et al. (<u>https://arxiv.org/abs/1807.02859</u>)

3 - AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers, Y. Yang et al. (<u>https://arxiv.org/abs/1903.01405</u>)

4 - Black Hole Mergers Induced by Tidal Encounters with a Galactic Centre Black Hole, Joseph John Fernández, Shiho Kobayashi (<u>https://arxiv.org/abs/1805.09593</u>)

1 - On stellar-mass black hole mergers in AGN disks detectable with LIGO, B. McKernan et al. (<u>https://arxiv.org/abs/1702.07818</u>)

 2 - Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes, A. Secunda et al. (<u>https://arxiv.org/abs/1807.02859</u>) (Shows qualitative behavior of objects near the migration trap)

3 - AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers, Y. Yang et al. (<u>https://arxiv.org/abs/1903.01405</u>)

4 - Black Hole Mergers Induced by Tidal Encounters with a Galactic Centre Black Hole, Joseph John Fernández, Shiho Kobayashi (<u>https://arxiv.org/abs/1805.09593</u>)

Assumptions

	BH accreting?	Multiple mergers?	Retrograde- Prograde?	3-body interaction	Interaction with the SMBH
1	No/yes	Yes	Yes	No	No
2	No	Yes	No	Yes	No
3	No	No	Not considered	No	No
4	No	No	Yes	No	Yes

Rate of BBH mergers $R = N_{GN} f_{AGN} N_{BH} f_d f_b \epsilon / \tau_{AGN}$

Rate of BBH mergers

	Rate (Gpc ⁻³ yr ⁻¹)	
1	$10^{-4} - 10^{4}$	
2	72 (UL)	
3	4	
4	0.6	

Rate of BBH mergers

	Rate (Gpc ⁻³ yr ⁻¹)	
1	10 ⁻⁴ - 10 ⁴	already constrained
2	72 (UL)	70% of LVC max rate
3	4	4% of LVC max rate
4	0.6	negligible contribution
LVC	9.7-101	

- Can be translated in constraints on AGN disk model!
- LVC could probe this population

Mass distribution

no accretion / no binaries in initial distribution / no BH added / BH embedded in the disk

Mass distribution

no accretion / no binaries in initial distribution / BH embedded in the disk + added BH

no accretion / no binaries in initial distribution / BHs ground down to the disk

Mass distribution

10 BHs with $10 M_{\odot}$ each

Uniform mass distribution

10 BHs with 20 M_{\odot} each

10 BHs with $30M_{\odot}$ each

(See paper for more realistic mass distribution)

no accretion / no binaries in initial distribution

Binary mass ratio

 $q = M_1 / M_2$ with $M_1 \le M_2$

17

- Peak at q = 0.2 -> low compare to q from isolated binaries
- q is independent of initial distribution
- BUT not random pairing as heavier BHs are closer to the SMBH, so shift to higher q

- Comparison at Eddington accretion rate / Super-Eddington accretion rate
- Faster merger rate for retrograde binaries
- Smearing due to gas accretion

More info from the papers

3 – Merger rate (almost) insensitive to the AGN accretion rate

3 – Alignment rate continuously increases with
SMBH mass

Conclusion

 Migration through AGN disk = potential efficient mechanism to quickly create a population of hard compact binaries

 Hardening of the mass distribution and heavier BHs merger faster, so channel might already contribute to LVC observations

How can we probe this population?

• With GW:

- Population maybe already part of LVC. Hints:
 - Spin distribution with aligned/anti-aligned spin binaries
 - Population of overweight BHs
- IMBH SMBH in a migration trap around SMBH should be detectable with LISA
- With EM:
 - Features in the optical, UV, X-ray spectral signatures due to IMBHs moving in migration traps or cavities.
 - Correlation between SGRBs and AGN disk
 - Focus on low-luminosity / low-accreting AGNs ([3] says Seyfert galaxies)
- With Neutrinos: let's discuss!