Theia Primer

Optics Group, Virgo

Wednesday, May $10^{\text {th }} 2017$

Modeling Gaussian beams

- General astigmatic Gaussian beam in an orthogonal basis $\left(k, e_{1}, e_{2}\right)$:

$$
E(\vec{r}, t)=\exp \left[i \eta(z)-i \frac{k}{2} t(x, y) Q(z)(x, y)\right] e^{i(\omega t-k z)}
$$

- (x, y) is the transversal coordinate in the $\left(e_{1}, e_{2}\right)$ basis, Q is a symmetrical tensor:

$$
\left(\begin{array}{cc}
\frac{\cos ^{2} \theta}{q_{x}(z)}+\frac{\sin ^{2} \theta}{q_{y}(z)} & \frac{1}{2} \sin 2 \theta\left(\frac{1}{q_{x}(z)}-\frac{1}{q_{y}(z)}\right) \\
\frac{1}{2} \sin 2 \theta\left(\frac{1}{q_{x}(z)}-\frac{1}{q_{y}(z)}\right) & \frac{\sin ^{2} \theta}{q_{x}(z)}+\frac{\cos ^{2} \theta}{q_{y}(z)}
\end{array}\right)
$$

- Specification parameters: $\theta, q_{x, y} \in \mathbb{C},\left(e_{1}, e_{2}\right)$ basis.
- Approximations: ROC(beam) \gg ROC(surface) (+ paraxial)
- Geometric optics: no approximation

What can it do?

Yes	No	Not yet
Non-sequential propa- gation	Higher order modes	Cavities
Sequential propaga- tion	Beam saving	Interferences
General astigmatic beams	Surface action specifi- cation Grating surfaces (Polarization)	Export to CAD soft- ware

Data structures/algorithm/approximations

Demonstration

- Comparison with OptoCAD for 2D tracing (telescope.py)
- An example in 3D with spherical mirrors (sphere.py)

Benchmarking: time (i7/8GB)

Time Complexity of Tracer

- CPU $=0.47 \mathrm{~ms} \times(\#$ beams $)\left(R^{2}=99.95 \%\right)$

Benchmarking: space (i7/8GB)

mem (MB)
Space Complexity of Tracer (end of tracing)

- Mem. $=9,3 \mathrm{MB}+3,4 \mathrm{kB} /$ beam $\left(R^{2}=99.76 \%\right)$

Next steps

References

圊 Kochkina, Wanner, Schmelzer, Tröbs, Heinzel: Modeling of the General Astigmatic Gaussian Beam and its Propagation through 3D Optical Systems, Applied Optics 24 (2013)

Arnaud, Kogelnik: Gaussian Light Beams with General Astigmatism, Applied Optics 8 (1969)

