theia

A 3D Gaussian Beam Tracer for Gravitational
Interferometers

Version 0.1.3

User Guide

Raphaél Duque
August 24, 2017

theia is a command line program and Python library for 3D Gaussian beam tracing. It
supports many different types of optical components, general 3D placing and orientation of
these components and general astigmatic Gaussian beams, among other features. It allows
the 3D visualization of the optical simulation by writing a CAD file read by the free software
FreeCAD. theia was developed at the Optics Group of the Virgo gravitational observatory in
Cascina, Italy. For more information on the Theia Project, surf to http://theia.hopto.org.

This document is a user’s guide to the theia command line tool. It gives the information
concerning the installation instructions, the usage and the input and output of theia necessary
to operate the program from the command line. It also provides a short introduction to the
theia library API. For more details on the theia Python library, please refer to the API Guide
provided along with this User Guide, or go to http://theia.hopto.org/docs/html/index.html
for the online API guide.

Contents

[T theia Quick Start] 2

[2__Physics behind of theia 2
21 The thelarationaldl o o v vt 2
2.2 The operation of theia]o 2
2.3 Beams and optics|. Lo 3
2.4 Algorithm and approximations| 4

13 Installation and usage| 5
8.1 _Installation instructionsl L 5
3.2 Usage on the command line| o oo 6

4 Input and output to theia| 7
4.1 The .tia input format|. Lo 7
4.2 The .out output file] o 9
43 e .fcstdoutput file]. L 10

B AL I . T heia APT 11
[5.1 A note on global variables|00 o000 11

5.2 asses and inheritance hierarchy| 0oL 11
oraphl L e 13
b.4 Miscellaneous remarksl o 13

1 theia Quick Start

For a quick start of theia once you are in the project repository, install theia locally with
make install. The command theia will then be available to you everywhere and you can run
the tutorial input files (with extension .tia) found in the tutos/ folder with theia FNAME.tia,
replacing FNAME. tia by one of the tutorial files. It is recommended when doing this to have the
Quick Reference document not to far (provided with the project or found online at the project
site) in order to learn the syntax for the input file.

The input .tia files provide (among other things) the optical setup information in text form.
The output .out file reports the physical data (waist position relatively to the origin of the beam
and waist size) of the beams generated by the propagation of the input beam. The .fcstd file
provides the information for the 3D viewing by the FreeCAD software. The alloptics.tia tutorial
file is particularly fit to quickly learn the input format because all the possible types of optics are
used in the corresponding simulation.

When you have run the simulations, the text output file .out will contain the information of
the traced beams, and the 3D viewing of the setup can be done by reading the .fcstd file with
FreeCAD.

2 Physics behind of theia

In the section, we will briefly explain the ideas behind the development of theia, describe the way
theia sees the physical objects it deals with and the tracing algorithm it implements.

2.1 The theia rationale

theia has been designed for flexible and practical operation. This why theia is not only a
command line tool, but also a Python library aiming at scripting and written accordingly — please
see the theia API Guide for more details on this library.

The theia command line tool has it its own right been designed with flexibility and pragmatism
in mind. The theia input and output files were thought to allow high level features to insure ease
of writing and reading by humans, to be printed out, brought to the optical bench and used as
references to follow the evolution of the optical layout and its components, to be read as structured
files containing figures one can readily compare to experimental data, etc.

Aiming for flexibility also implies liberty for the user when it comes to input. The user can
specify as much information as she or he wishes. From specifying zero parameters and using default
values for all the arguments to using built-in values such as handy units, users have a large radius
of action for their input.

With liberty must also come caution. If the user specifies geometrically inconsistent parameters
— leading to self-intersecting surfaces for instance —, then warnings may be issued to standard
output (unless specific command line flags are used, see 3.2) but the simulation will carry on
almost seamlessly, and may lead to unexpected behavior.

2.2 The operation of theia

theia is a command line 3D Gaussian beam tracing program. During its operation, input beams
and an optical setup are read from an input text file and these beams are traced and interact with
optical components. Following the rules of geometrical and Gaussian optics, and according to some
selection rules designed to insure the termination of the program, this process produces new beams,
by reflection and transmission of the former beams on the surfaces of the optical components. This
creation and selection process is repeated recursively in order to calculate all the beams produced
by the input beams and their geometrical and Gaussian characteristics.

This operation results in the writing of a text file containing the information on the traced
beams and a CAD file for 3D visualization.

2.3 Beams and optics

The physical objects a representation of which theia deals with are general astigmatic Gaussian
beams, and optical components in 3D general positions and orientations. This section describes
how these objects are seen by theia.

Gaussian beams. Gaussian beams are described by two set of parameters: geometrical param-
eters and Gaussian parameters.

1. The geometrical parameters are the 3D position of the origin of the beam, the unitary 3D
vector directing the beam and finally the length of the beam, from its origin to its end point.
On input, the position of the origin is given by three coordinates and the direction by two
angles forming spherical coordinates. See section 4.1 for details. The length of the beam is
initialized to 0 and updated once we know if and where the beam ends by interaction.

2. The Gaussian parameters are threefold: one complex matrix and two unitary vectors. It is
so because the general astigmatic beam, as it forms by repeated oblique incidences on optics,
is described on one polarization direction by the following equation on the electrical field:

"t 1)QU2) (2,)+

E(7,t) = exp(in(z) — @'2

in which z is the coordinate of 7, (x,y) its coordinates in the plane transversal to the beam’s
direction, and @ is a complex matrix, and 7 accounts for all other phase accumulation (Gouy,

etc.). E|

Thus, to specify completely the state of the beam at a position z along the beam, one has to
specify two vectors (the eigen-directions) which span the transversal plane, and the matrix
Q(2) in the basis of these vectors. From @), one can derive the waists and positions of these
waists, Rayleigh ranges, etc.

In theia, to each beam are attached these two vectors and the value of Q at the origin of
the beam.

Inputting Gaussian data. Inputting to the .tia file only allows for simple astigmatic beams.
Thus it is asked to the user to specify the waists and positions of these waists, and the angle of
rotation of the beam (in the clockwise sens looking down the beam) with respect to the beam
which has as a first eigen direction the vector with the largest possible global Z coordinate (and
which is of course orthogonal to the beam direction).

In other words, if the user specifies a direction dir and an angle of 0, then she or he is saying that
the first semi-axis of the amplitude ellipsis (in which the first input waist and waist distance are
found) is that unitary u vector orthogonal to dfr, and which has the largest possible Z coordinate.
See ﬁgurefor an illustration. And the second semi-axis is the unitary v vector such that (d;r, U, v)
is a right-handed orthonormal basis.

What if dir is directed by +ez and the ”largest possible Z coordinate” condition makes no
sens? Then u is +ex and v is *ey.

Now, if the angle Alpha is not 0, then the basis the user means is the rotation of the Alpha=0.
case by an angle Alpha around dir.

Optical components. Available optics are semi-reflective mirrors, thin lenses (defined by their
focal length and diameter), thick lenses (thickness on axis, refractive index, curvatures and di-
ameter), and beam-dumps (which stop light). Optical components all have cylindrical symmetry,
except for mirrors which may have a wedged face. The labeled "HR” surface is the principal
surface, where beam are meant to be reflected or transmitted. In the case of mirrors it is the

INote that in the case where the beam is orthogonal (but not in the general astigmatic case), there exists a
orthogonal basis of the transverse plane in which the @ matrix is diagonal and the expression of the electrical field
is reduced to a more familiar form exp(—ig(xz/qx (2) + y2/qy(2))). This description is amply detailed in [T} [2].

A

e

Figure 1: The Alpha = 0 case. X,Y, 7 is the global coordinate system, u is defined as being the
vector orthogonal to the beam direction dir and having the largest global Z coordinate. v is chosen
such that (dir,u,v) is a right-handed orthogonal basis. For a non-zero Alpha case, rotate v and v
by Alpha around dir

non-wedged surface. See section 4.1 for a list of available optical components and how to input
their parameters.

Since mirrors can be wedged and do not have cylindrical symmetry, it is necessary to specify an
angle to describe the position of the wedge in space. This is done in a similar fashion than in the
beam case. If this angle (also called Alpha is 0, then the point of the AR (wedged face) which is
not affected by the wedging (it is the point on the rim of the original cylinder the AR was wedged
from) has the largest global Z component. Similarly as for beams, if the ”maximum Z” condition
makes no sense because the HR normal is +ez (resp. —ez), then this reference point has largest
(resp. smallest) X coordinate.

If Alpha is not 0, then this reference is situated at the image of the Alpha=0 reference point
by the rotation of Alpha around the normal (outpointing) vector of the HR surface. See figure
for an illustration.

On the contrary of lenses, the given center of the HR surface of mirrors on input is the center of
the chord of the HR surface, and not the apex of the HR surface. Similarly, the thicknesses of
mirrors as input are the thicknesses on the rim (rim of HR to closest point of wedged AR) and not
on the optical axis.

e

W

Figure 2: A mirror. Its center of HR is (0, 0, 0) and its normal to HR is —ez. Thus the reference
point is (-1, 0, 0). Thus we can say that this is a thickness = 0, positive wedged mirror with
Alpha= 225 ° (angle between the reference point and the point of the rim of the original cylinder
which touches the AR face). Note that we could have also said a thickness = 1, negatively wedged
mirror with Alpha= 45 °.

2.4 Algorithm and approximations

As previously described, theia traces beams by interaction of the input beams with the optics,
recursively. Here are the rules to calculate the beams.

Physical rules.

The laws of refraction and reflection are applied to calculate the directions of

the new beams, as well as the origin () matrix (and the base vectors to express it) of the new beams.
The calculation of the @) matrix follows a phase matching method and is detailed in [I} 2]. Total
reflection is also taken into account, and the powers of the new beams are calculated according to
the reflectance and transmittance of the surface.

This rule introduces the approximation that the radius of curvature of the beam must be much
smaller than the radii of curvature of the optics at hand. Apart from this, there are no other
approximations (nor for the geometrical optics calculations to determine the direction of the new

beams, nor for the exact point of origin of the new beams on the curved surfaces).

Computational rules.

been introduced. Each simulation is led with an order and a threshold:

In order for the program to terminate, some computational rules have

1. Each initial beam is created with a strayness order of 0. Any beam reflected by a mirror

AR face, transmitted by a mirror HR face, or reflected by any face of a lens has the order
of its parent beam, plus one. Beams with an order larger than the simulation order are
excluded from the following calculation step and their children are not determined. More
generally, each surface of an optic has a certain action on the order of beams, depending on
the nature (reflected or transmitted) of the beam and of the optic. For example, the surfaces
of beam-splitters do not increase the order of beams, whereas all surfaces of lenses increase
the order of reflected beams by 1, and those of transmitted beams by 0. See table [1| or the
Quick Reference document for a list of the actions of optics on beams.

. The power of children beams are determined with the powers of the parent beams and the
reflectance and transmittance of the surface. Similarly, beams with powers smaller than the
simulation threshold are excluded from the following calculation step and their children are
not determined.

Optic Action of ... HR | HR on transmit- | AR on reflected AR on transmit-
on reflected ted ted

Mirror +0 +1 +1 +0

Thick or | +1 +0 +0 +1

thin lens

Beam- +0 +0 +0 +0

splitter

Special User defined (see 4.1)

surface

Table 1: The actions of surfaces of optical components on the strayness orders of beams

3 Installation and usage

3.1 Installation instructions

theia uses the Python standard library component setuptools to install the command line tool
theia as well as the Python library.

Local installation.

root and issue the following commands:

To install theia to your local environment, cd to the project repository

e make install to install the theia command line program and library and compile the
documentation in the doc/ sub-directory of the project;

e make build-theia to only install the program and the library but not compile the docu-
mentation (useful if you do not have a latex environment running);

e make build-doc to only compile the documentation (useful if you have modified the library
to your liking — please do).

This procedure will install the theia script to $HOME/.local/bin, and this directory must be in
your PATH in order to have access to theia from anywhere in your file system.

System-wide installation. For a system-wide installation, you can issue python setup.py
install with root privileges from the project root repository. The documentation must be com-
piled separately as indicated in the former paragraph and moved to some shared directory if you
like.

Uninstalling. Uninstalling a local installation if fairly simple: issue make clear from the project
root directory. This will wipe your $HOME/ .local of anything that has to do with theia. All the
documentation, tutorial files or theia input or output files elsewhere will of course stay in place
after this procedure.

Uninstalling a system-wide installation is more tricky, and we do not provide an automated
procedure for this and admins probably know better than us on this subject, though on most
systems setuptools puts library files in /usr/local/1ib/python2.7/*-packages and scripts in
/usr/local/bin.

3.2 Usage on the command line

The general usage of theia is: theia [options] FNAME, where:

e [options] are command line options. See the next paragraph or the output of theia -h
for more details;

e FNAME is the name of the configuration file to use for the simulation, with or without the
.tia extension. See the next section for details on the format of the .tia file.

Command line options. As introduced in section 2. of this User Guide, theia takes one
configuration file as an input and may write out to output files and to standard output (the
terminal window). The command line options allow the user to control all these outputs. The
command line options are summed up in table

Note on anti-clipping. Anti-clipping is when a beam passes near an optic without formally
interacting but its axis is within 2 waists of the optic. This leads to power losses and diffused
light. It is the opposite of clipping, in which the beam is not completely included in the optic it is
interacting with.

Warnings are always issued when clipping occurs (except if the -w, --no-warn option is used),
but calculations for anti-clipping are heavier (they add approximately half more tracing calcula-
tions), and are only done if the ~a, --anti-clipping option is used. If it is, then corresponding
warnings are issued.

Note on the FreeCAD libraries. theia writes the 3D visualization information for the simula-
tion to a CAD file to be read by FreeCAD. If you do not wish to write the CAD file or or if you do
not have the FreeCAD libraries installed, you may use the -c command line option.

On the contrary, if you have the FreeCAD libraries and you know where they are (usually
usr/lib/freecad/lib), you can save theia the effort of finding them by aliasing theia with
theia -1 [WHERE YOUR FREECAD LIB IS].

Command line option \ Effect ‘

-h, --help Show the usage and the command line options of theia and exit
-1 FCLIB, Speciny] the location of the FreeCAD libraries for the 3D visual-
--FreeCAD-1ib FCLIB ization as being FCLIB on your system

-i, --info During the simulation, do not output tracing information to stan-
dard output (see section 4.3 for details on the information that is
output)

-w, —-no-warn During the simulation, do not output warnings to standard output
(see section 4.3 to find out what warnings may be written)

-t, --no-text After the simulation, do not write the .out text output file (see
section 4.2 for details)

-c, ——no-CAD After the simulation, do not write the CAD file

-a, ——anti-clipping Include anti-clipping in simulation (see next paragraph)

-s, --short-output Exclude beams propagating inside optics from text output, termi-
nal output and CAD rendering files. This also changes the way
beams are referenced to in these files and in the terminal output

-v, --version print version of theia and exit

Table 2: Command lines options of theia.

4 Input and output to theia

4.1 The .tia input format

.tia format input files are simple text files reporting the simulation parameters and the optical
setup to the theia CLI tool. In such a file, each line is used to describe its own objectﬂ These
objects can be simulation parameters, simulation meta-data or optical components. The object
you are specifying with a given line depends on the format of the line, according to the following
table Bl

For beams, mirrors, beam-splitters, special surfaces, beamdumps, ghost surfaces, thin and
thick lenses, report to the Quick Reference document in order to know what are the order and the
signification of the entries.

Entries and available Python expressions. An entry in a input file line is of the form
(remember spaces and tabs are not taken into account) VAR=EXPRESSION or simply EXPRESSION.
Use the second form when you have specified all the parameters since the beginning of the line
and in the right order, and the first form when you want to input in the order you like, or you
have omitted some parameters (think of this as a set of argument to a function, the arguments are
considered in the right order and complete until the first VAR=EXPRESSION, and then its up to you
to specify or not the following parameters).

EXPRESSION is any Python expression that is valid in the scope where the input reading function
is defined. What this means is that you can use:

e Standard Python literal integers, floats and operators: 4., .2e-3 * 3 / 2, etc.

e The functions and constants that are available as built-ins in this scope (these are listed in the
Quick Reference document): arccos(3 * exp(-2.)) * mW, sqrt(4.*mm*mm), arctan(pi/12),
ete.

e Any user defined function or constant as long as it is declared as a global in the
theia.helpers.settings module and initialized correctly (see section 5.1 on globals), de-
clared in the theia.helpers.units module, or declared directly in theia.running.parser.
After all of these operations, theia has to be rebuilt with make install.

3By the way, all spaces and tabs are ignored, so you can throw some in wherever you want.

Lines starting . specify and the rest of the line is ...
with ...
a comment ignored
order= the order of the simulation | a Python expression evaluating to an integer
threshold= the threshold of the simu- | a Python expression evaluating to a floating point
lation number
bo the coordinates of an opti- | a comma-separated list of entries specifying the ori-
cal bench, i.e a new refer- | gin of the bench
ence for coordinates (these
coordinates will be added
to the optics specified af-
ter this line and until the
next bo line)
bm an input orthogonal Gaus- | a comma-separated list of entries (see following para-
sian beam graph) specifying the characteristics of the beam
mr a mirror object a comma-separated list of entries specifying the char-
acteristics of the mirror
bs a beam-splitter object a comma-separated list of entries specifying the char-
acteristics of the beam-splitter
sp a special optic object (of | a comma-separated list of entries specifying the char-
which the wuser specifies | acteristics of the optic
explicitly the actions of
surfaces on beam orders)
th a thinlens object a comma-separated list of entries specifying the char-
acteristics of the thin lens
tk a thicklens object a comma-separated list of entries specifying the char-
acteristics of the thick lens
bd a beamdump object | acomma-separated list of entries specifying the char-
(which stops all beams) acteristics of the beamdump
gh a ghost surface (which | acomma-separated list of entries specifying the char-
does not affect the beam | acteristics of the ghost surface
but only make a new en-
try in the .out file)
anything else the long name of the simu- | any text input (spaces and tabs will be stripped)
lation (appears in the out-
put file)

Table 3: Format of each type of line in a .tia input file

As we just mentioned, the parts of an entry line which are between two commas or between a
comma and a = sign are evaluated as Python expressions, which allows for a great flexibility of
the input. Nonetheless, you must beware of Python expressions evaluation which might lead to
unexpected behavior, particularly on integers! For example, if one enters (3/4) *pi, the evaluation
will lead to 0 because of integer division, and not 37/4 = 135°. To obtain 135°, one should enter

3*pi/4, or (3./4)*pi

Empty constructors.

bm

for instance.

In theia, all the constructors available to the user have a complete set
of default values (see section 5.2 for details on this). Thus an input file can very well contain a
line with a tag and zero arguments, such as:

#example usage of a empty constructor for a (thus default) input beam

To find out what the default values of all the constructors are, report to the Quick Reference

document.

Meta data-specifying lines overwrite each other. Lines used to specify the simulation order,
threshold and long name overwrite each other. If you specify a "threshold=" line after another
”threshold=" line, this latter one will overwrite the value specified in the former line. The same
mechanics apply to ”order=" and long-name lines.

4.2 The .out output file

The output file is also a simple text file. In contains formatted information on the simulation, the
optics present in the setup and the beams generated by these. All this information is divided in
sections:

e The META DATA section specifies the date at which the file was written, the input file used,
the various simulation parameters.

e The SIMULATION DATA section gives information on the components used in the simulation
(component type, reference and position of the HR surface chord center), and on the gen-
erated beam trees (a reference to their original beam and the number of beams the tree
contains in total).

e The BEAM LISTING section reports, in a beam tree by beam tree fashion, the beams contained
in the different beam trees. for each beam, you will find the optic and face the beam departs
from, the length of the beam, the optic and face the beam finishes on, the reference to the
beam, and then the waist positions (along the beam starting from the beam origin), waist
sizes and finally beam direction. The waists are given in the proper basis attached to the
beam, as described in section 2.3.

Beam references. The reference of each beam (as it appears at the end of each entry in the
BEAM LISTING section of the output file) is the reference of its parents beam plus a tag which can
be r or t according to whether the beam was produced by reflexion or transmission of the parent
beam. The references of the input beams are read in the input file.

Here is a sample of output:

(M1, AR) 0.946496969941m (L1, HR) TBttt {
Waist Pos: (-1.8387309993210437, -1.8387309993210468)m
Waist Size: (0.00016310752802, 8.15537640098e-05)mm
Direction: (90.0, 4.68099236149e-13)deg

}

This sample describes a beam traveling 94.6 cm from the AR surface of the optic labeled M1
(surely a mirror) to the HR surface of the optic labeled L1 (surely a lens). This beam is the beam
transmitted by the beam transmitted by the beam transmitted by the input beam labeled TB. It
waists are about .1 um and both located 1.83 m behind the origin of the beam (thus this beam is
in its diverging phase all the way from M1 to L1). Its direction is along the positive X axis.

Note on short beam references .The default way of referencing beams (appending r or t at
every interaction) can produce very heavy beam references in the case of a large simulation. Thus,
a command line option -s, --short-output is provided. When this option is used:

1. Only the beams propagating outside the optics will be reported to the output files (text and
CAD)

2. All the references to the beams are shortened in the following manner: instead of using r and
t to indicate reflection and transmission on surfaces of optics, R and T are used to signify
reflection and transmission on optics as a whole. For example, a reference ttrtt corresponds
to two transmissions, a reflection and again two transmissions, which in turn corresponds to
being transmitted globally by an optic, then reflected, then transmitted, given that input
beams are (generally) outside of optics, and thus the short reference of such a beam will be
TRT, which is simpler. We may say of this beam that it was transmitted by the first optic it
encountered, then reflected by the next and transmitted by the next.

10

4.3 The .fcstd output file

theia writes the 3D visualization information to a .fcstd file to be read by the free software
FreeCAD. This file is intended to ease navigation in the optical setup and also to review the
characteristics of the traced beams.

Once the simulation is done, open the .fcstd file with FreeCAD. Every simulation object
(beam, optic, etc.) has one CAD object associated to it, these are all listed in the left panel of
the FreeCAD window. These objects contain all the relevant optical and geometrical data on the
simulation objects. Of course, all these objects can be manipulated with the CAD software.

See figure [3] for an example of the 3D viewing.

Combo View ®
Model | Tasks

Labels & Attributes
® M1

® LAS |
® LAS_ttttrr

Property Value

> Placement [(0,00 0,00 1,00); 0 de...

Label LAS_tttt

L 0.149291676915m
Order 0

P 656.1mW

Ref LAS-tttt

WDXx 0.646352087269m
WDy 0.63986237615m
Wx 0.128811789771mm
Wy 0.139550635767mm
IWx 1.70431265078mm
Iwy 1.55916847465mm
Origin F... AR

origin O... L2

TWx 1.31324154061mm
Twy 1.19873868175mm
Target F... HR

Target... M1

Figure 3: The 3D viewer reading the .fcstd file of theia. On the left panel, one sees a beam
object (which was highlighted when the beam on the view was clicked on by the user) and the
corresponding Gaussian and geometrical data of the beam.

11

5 An introduction to the theia API

This section is an introduction to the Application Programmers Interface to the theia library.
It give somewhat more detail on the algorithm and data structures of theia and how they are
implemented in theia. This guide may be useful to anyone who wants to use theia to develop
their own optical simulation scripts, and to anyone who would like to contribute to theia. For
a through and complete treatment of the theia API, see the API Guide document or the online
documentation.

Throughout this section, Unix paths/like/this are understood as relative to the theia project
root directory (e.g. doc/img/flow.png) and Python import statements like.this.one are un-
derstood as relative to the theia package (e.g. running.simulation.Simulation.__init__).

5.1 A note on global variables

The theia CLI tool uses a certain number of global variables in order to keep values which don’t
change along the execution. These global variables are consequently needed by a certain number
of functions defined in the library in order for the CLI tool to be as functional as possible. When
using theia as a library, one may not need all these globals and they may even get in the way of
development.

How to take care of the globals once and for all. The global variables are all declared
in helpers.settings and are initialized with helpers.settings.init at the very beginning of
main.main, which takes in a dictionary and reads the globals from there. If you don’t want to hear
about the globals, you can place the following snippet (found in tests/test_simulation.py) at
the beginning of your script and not worry about the globals.

use this snippet and all globals worries are gone
from theia.helpers.settings import init

initialize globals in a dictionary

dic = {’info’: True, ’warning’: True, ’'text’: True, ’cad’: True,
"fname’: ’theiasimulation’, ’fclib’: ’/usr/lib/freecad/lib’,
"antiClip’: True, ’short’: False}

init (dic)

you’re all set

Who uses the globals? Here is a table (table listing the global variables and which functions
use them.

5.2 Classes and inheritance hierarchy

Figure 4] presents the inheritance hierarchy of the classes of theia.

A word on initializer default values. We try to avoid surprises and stay consistent throughout
the code with the following policies concerning classes at the leaves of the inheritance graph:

1. For classes whose initializers will be called only with input form users (read from an input file
or in a a script), every parameter of the constructor has a default value and the constructor
can be called without arguments. What’s more, the input of the user is processed through
the class initializer and then fed to the initializer of the mother class. For example, the user
may provide X, Y and Z to the constructor she or he calls, then these are processed and it is
[X, Y, Z] as a list (with types checked etc.) which is fed to the mother initializer.

2. For classes whose initializers are called solely internally, there are no default values. These
are the constructors of SetupComponent, Optic.

12

’ Global \ Used by

info optics.beamdump.BeamDump.hit
optics.optic.0Optic.hitHR
optics.optic.Optic.hitAR
optics.optic.Optic.hitSide
tree.beamtree.tree0fBeam
warning optic.mirror.Mirror.__init__
optic.beamsplitter.BeamSplitter.__init__
optic.special.Special.__init__
optic.thicklens.ThickLens.__init__
optic.thinlens.ThinlLens.__init__
running.simulation.Simulation.run
tree.beamtree.tree0fBeam
text, cad, fclib | main.main
fname main.main

running.simulation.Simulation.load
running.simulation.Simulation.writeOut
running.simulation.Simulation.writeCAD
antiClip tree.beamtree.tree0fBeam

short optics.beamdump.BeamDump.hit
optics.Optic.hitHR
optics.Optic.hitAR
optics.Optic.hitSide
rendering.writer.writeTree
running.simulation.Simulation.writeOut
tree.beamtree.BeamTree.lines
tree.beamtree.BeamTree.outputLines
tree.beamtree.tree0fBeam

Table 4: The global variables of theia and the functions who use them

3. For classes that may be instantiated internally and by users, the module defining the class
defines a global scope function, whose parameters all have default values and which is in-
tended to be used with input from the user, as the constructors described in the previous
point 1. This function is named user$CLASSNAME and processes the input of the user into
input for the class’s proper __init__ initializer. On the other hand, this proper initializer
is intended for internal use only and has mo default values. This is for example the case of
the optics.beam.GaussianBeamn class, whose constructor is called internally to generate new
beams and with user input read from the input file. In this last case it is userGaussianBeam
which is called.

Abstract Base Classes. The highest class of the optical classes hierarchy is the
optics.component.SetupComponent class. Its metaclass is set to abc.ABCMeta, making it an ab-
stract base classﬂ This essentially means that no daughter class of this class can be instantiated un-
less all the methods decorated with abc.abstractmethod have been reimplemented by the daughter
class. The methods concerned with this limitation are optics.component.SetupComponent.lines
and optics.component.SetupComponent.isHit. Methods decorated with abstractmethod in an
abstract base class can eventually be implemented in the mother class, but in theia they all pass,
and could be called pure virtual for someone coming from C++.

4See docs.python.org/2/1library/abc.html for details

13

Figure 4: Inheritance hierarchy of theia

5.3 Call graph

Here (figure [5)) is the call graph of the theia CLI tool, from which one can easily deduce the call
graph of any individual function. You can refer to the A PI Guide or the online API documentation
to find out in which module the functions are defined.

Note on the call stack. According to this call graph (figure , the stack has a maximum
height of 9 + 2(n — 1) when there are n levels of recursion. Generally, the program crashes — if it
crashes — by recursion depth limit exceeding (leading to a handled RunTimeError exception and
an exit with an error code of 1) before causing a stack overflow.

5.4 Miscellaneous remarks

Coding style. In the development of theia we have tried to stick to a couple of coding style
conventions, which may help to review the code and are important to know for anyone wishing to
contribute.

e The code of theia is heavily commented and doc-stringed, and it should stay that way in
order for theia to be an accessible library.

e Throughout the library, classes and attributes look LikeThis whereas objects and methods
look 1ikeThis.

e There is an approximate one file — one class correspondence and files are named accordingly
with the objects they define. Generally, we have a tendency to distribute functions in different
modules if they provide different functionalities, regardless of the total number of modules.
Functions are together in a module if they belong together, consequently they are many
modules in theia.

e We tend never to skip more than 1 line (Python is already very formatted).

e # Provides lines at the very beginning of modules allow to know at a glance what variables,
functions and classes the module provides.

e Imports: import first from the Python standard library and third-party packages, then from
theia sub-packages other than the current, then from the current theia sub-package. For
theia sub-packages imports, always use the from ... import idiom, always use relative

14

— 1w theia .
7 N line***Inter - /, geometry ~

dicOf i N
L main (/' j N opt.isHit Q l beam.j_mn_
y-

readin —
v /' L line**Inter Y > opthitfAR HR,Side}
_——ini - i
- Y > opthit «——
IOf/ﬂor VJ | opt_nit_, //A\,/ N\
| simu,__init_ / beam.FBB 5 opt.isHit BeamTree.__init__
'} J / ,,,\/x—> beam.{gaussian funcs}
—— S.load «—— ‘ |

. treeOfBeam free.outputLines \

/ I/rﬁhxtérror _— ,
/ '/ V I ‘ geometry <

\“ exit(1) _— s.run /
\ / A

\ “‘ s.writeOut <—

» tree.lines

_—— formatter «—

FC{opt, beam}.__init__

\ exit(l) \\\77””"\\ — /‘
\ ImportError— find CAD I’ff __——» writeToCAD({opt, tree}) .
] N
| ’/ T /‘*w—— {opt, beam}shape
| exit(1) s.writeCAD <
lexitQ) « /

Figure 5: Call graph of the theia CLI tool. italics: generic object or group of methods,
recursive call, red: handled exception.

imports (from ..helpers import interaction) and for standard library and third-parties
always import before you from ... import. We try to not import what we don’t need.

e Class doc-string: present class attributes before instance attributes and mention if they are
inherited.

Writing to stdout and files. Many classes reimplement the __str__method to have print (object)
print a neatly formated description of the object. To this effect there are two important meth-
ods: lines (instance method) and helpers.tools.formatter (global scope function). formatter
takes a list of strings (lines to output) and makes C-style indented output with curly braces in the
right place in one large string. Basically, one has:

inside class scope
def __str__(self):
return formatter(self.lines ())

References

[1] Kochkina, Wanner, Schmelzer, Trobs, Heinzel: Modeling of the General Astigmatic Gaussian
Beam and its Propagation through 3D Optical Systems, Applied Optics 24 (2013)

[2] Arnaud, Kogelnik: Gaussian Light Beams with General Astigmatism, Applied Optics 8 (1969)

15

	theia Quick Start
	Physics behind of theia
	The theia rationale
	The operation of theia
	Beams and optics
	Algorithm and approximations

	Installation and usage
	Installation instructions
	Usage on the command line

	Input and output to theia
	The .tia input format
	The .out output file
	The .fcstd output file

	An introduction to the theia API
	A note on global variables
	Classes and inheritance hierarchy
	Call graph
	Miscellaneous remarks

