theia

A 3D Gaussian beam tracer

Version 0.1.0
API Guide

Raphael Duque
June 6, 2017

theia is a command line program and Python library for 3D Gaussian beam tracing. It
supports many different types of optical components, general 3D placing and orientation of
these components and general astigmatic Gaussian beams, among other features. theia was
developed at the Optics Group of the Virgo gravitational observatory in Cascina, Italy. Please
see the README . md file of theia or surf to http://37.117.61.221:56000 for more information.

This document is an Application Programming Interface Guide for the theia library. It
give somewhat more detail on the algorithm and data structures of theia and how they are
implemented in theia. This guide may be useful to anyone who wants to use theia to develop
their own optical simulation scripts, and to anyone who would like to contribute to theia.

Throughout this document, Unix paths/like/this are understood as relative to the theia
project root directory (e.g. doc/img/flow.png) and Python import statements 1ike.this.one
are understood as relative the theia package root directory (e.g. running.simulation.Simulation.__init__).

Contents

0.1 A note on global variables
0.2 Classes and inheritance hierarchy 0oL
0.3 Callgraph e
0.4 Miscellaneous remarks L Lo

W W NN

0.1 A note on global variables

The theia CLI tool uses a certain number of global variables in order to keep values which don’t
change along the execution. These global variables are consequently needed by a certain number
of functions defined in the library in order for the CLI tool to be as functional as possible. When
using theia as a library, one may not need all these globals and they may even get in the way of
development.

How to take care of the globals once and for all. The global variables are all declared
in helpers.settings and are initialized with helpers.settings.init at the very beginning of
main.main, which takes in a dictionary and reads the globals from there. If you don’t want to hear
about the globals, you can place the following snippet (found in tests/test_simulation.py) at
the beginning of your script and not worry about the globals.

use this snippet and all globals worries are gone
from theia.helpers.settings import init

initialize globals in a dictionary

dic = {’info’: False, ’warning’: False, ’text’: False, ’'cad’: False,
‘fname’: ’test_optics’}

init (dic)

you’re all set

Who uses the globals? Here is a table listing the global variables and which functions use
them.

’ Global \ Used by ‘

info optics.beamdump.BeamDump.hit
optics.lens.Lens.hitActive
optics.mirror.Mirror.hitHR
optics.mirror.Mirror.hitAR

optics.optic.Optic.hitSide
tree.beamtree.tree0fBeam

warning optic.mirror.Mirror.__init__
optic.thicklens.ThickLens.__init__
optic.thinlens.ThinlLens.__init__
running.simulation.Simulation.run
text, cad, fname | main.main

Table 1: The global variables of theia and the functions who use them

0.2 Classes and inheritance hierarchy

Figure 0.2 presents the inheritance hierarchy of the classes of theia. If you see a method twice, it
just means the daughter class reimplements the method.

A word on initializer default values. We try to avoid surprises and stay consistent throughout
the code with the following policies concerning classes at the leaves of the inheritance graph:

1. For classes whose initializers will be called only with input form users (read from an input file
or in a a script), every parameter of the constructor has a default value and the constructor
can be called without arguments. What’s more, the input of the user is processed through
the class initializer and then fed to the initializer of the mother class. For example, the user
may provide X, Y and Z to the constructor she or he calls, then these are processed and it
is [X, Y, Z] as a list (with types checked etc.) which is fed to the mother initializer. This
concerns the constructors for ThinLens, ThickLens, Mirror, BeamDump.

2. For classes whose initializers are called solely internally, there are no default values. These
are the constructors of SetupComponent, Optic.

3. For classes that may be instantiated internally and by users, the class has a classmethod
decorated method, whose parameters all have default values and which is intended to be used
with input from the user, as the constructors described in the previous point 1. This method
is named user$CLASSNAME and processes the input of the user into input for the class’s proper
__init__initializer. On the other hand, this proper initializer is intended for internal use only
and has no default values. This is for example the case of the optics.beam.GaussianBeam
class, whose constructor is called internally to generate new beams and with user input read
from the input file. In this last case it is userGaussianBeam which is called.

Abstract Base Classes. The highest class of the optical classes hierarchy is the optics.component.SetupComponen
class. Its metaclass is set to abc . ABCMeta, making it an abstract base class!. This essentially means

that no daughter class of this class can be instantiated unless all the methods decorated with
abc.abstractmethod have been reimplemented by the daughter class. The methods concerned

with this limitation are optics. component.SetupComponent.lines and optics.component.SetupComponent.isHit.
Methods decorated with abstractmethod in an abstract base class can eventually be implemented

in the mother class, but in theia they all pass, and could be called pure virtual for someone coming

from C++.

0.3 Call graph

Here is the call graph of the theia CLI tool, from which one can easily deduce the call graph of
any individual function.

Figure 1: Call graph of the theia CLI tool

For a more concise view, here is the dependency tree of the functions of the theia library.

Figure 2: Dependencies of the functions of the theia library

Note on the stack. According to this call graph (figure 1), the stack has a maximum height of
9 + 2(n — 1) when there are n levels of recursion. Generally, the program crashes — if it crashes
— by recursion depth limit exceeding (leading to a handled RunTimeError exception and an exit
with an error code of 1) before causing a stack overflow.

0.4 Miscellaneous remarks

Coding style. In the development of theia we have tried to stick to a couple of coding style
conventions, which may help to review the code and are important to know for anyone wishing to
contribute.

1See docs.python.org/2/library/abc.html for details

e The code of theia is heavily commented and doc-stringed, and it should stay that way in
order for theia to be an accessible library.

e Throughout the library, classes and attributes look LikeThis whereas objects and methods
look 1ikeThis.

e There is an approximate (it isn’t true only in the helpers sub-package) one file — one class
correspondence and files are named accordingly with the objects they define. Generally,
we have a tendency to distribute functions in different modules if they provide different
functionalities, regardless of the total number of modules. Functions are together in a module
if they belong together, consequently they are many modules in theia.

e We tend never to skip more than 1 line (Python is already very formatted).

e # Provides lines at the very beginning of modules allow to know at a glance what variables,
functions and classes the module provides.

e Imports: import first from the Python standard library and third-party packages, then from
theia sub-packages other than the current, then from the current theia sub-package. For theia
sub-packages imports, always use the from ... import idiom, always use relative imports
(from ..helpers import interaction) and for standard library and third-parties always
import before you from ... import. We try to not import what we don’t need.

e (Class doc-string: present class attributes before instance attributes and mention if they are
inherited.

Writing to stdout and files. Many classes reimplement the __str__ method to have print (object)
print a neatly formated description of the object. To this effect there are two important meth-
ods: lines (instance method) and helpers.tools.formatter (global scope function). formatter
takes a list of strings (lines to output) and makes C-style indented output with curly braces in the
right place in one large string. Basically, one has:

inside class scope
def __str__(self):
return formatter(self.lines ())

